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Abstract. In this paper, we propose a new method for foreground ex-
traction of underwater videos based on sparse and low-rank matrix de-
composition. By stacking the underwater video frames as columns of a
matrix, principal component pursuit algorithm is used for decompos-
ing the matrix into a low-rank matrix representing the stationary back-
ground and a sparse matrix representing the activities in the foreground.
Then, the sparse matrix is processed with adaptive threshold to extract
objects in the foreground. We evaluate our method quantitatively on var-
ious underwater videos. Our method is robust to various scenarios like
blurred videos, illumination variations in the background, and crowded
foreground objects. The experimental results demonstrate the promising
performance of our proposed method.

Keywords: foreground extraction, underwater videos, principle component pur-
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1 Introduction

The advancements in underwater imaging system, such as the NEPTUNE and
VENUS observatories1, have resulted in a proliferation of underwater video data
and static images. On the one hand, it provides ocean scientists and biologists a
new powerful way to monitor the complex underwater environments and marine
species. On the other hand, it imposes a series of great challenges for underwater
imagery and video analysis.

In terms of monitoring marine species, we often need to identify activities
that stand out from the background from a sequence of monitoring underwa-
ter video frames. However, some special properties of underwater videos impose

⋆ This work is supported by National Natural Science Foundation of China (Grant No.
71171121/61033005) and National 863 High Technology Research and Development
Program of China (Grant No. 2012AA09A408).

1 http://www.oceannetworks.ca/
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great challenges for background modeling and foreground extraction of under-
water videos. For instance, the smoothed and low contrasted images often affect
the performance of algorithms that use texture information. The background of
some videos may be featured by complex textures. Sometimes, the video may
contain transient and abrupt luminosity changes. Absorption and scattering may
cause light attenuation, limiting the visibility. Furthermore, underwater objects
like fish behave erratically and fast in 3-degree. All of these properties make
foreground extraction of underwater video a very challenging research problem.
Methods performing well in normal scenarios are often difficult to generalize to
underwater ones. In [1], they use adaptive Gaussian Mixture Model (GMM) [2]
to detect fish. In [3], they use Video Background Extraction (ViBe) [4] algorithm
which utilizes a list of most recent values of each pixel to decide the foreground.
In [5], the authors present a texton based kernel density estimation method to
build background and foreground models. A comparative study on some object
detection algorithms in the task of fish detection is implemented in [6].

Fig. 1. One example of our method on foreground extraction of underwater videos.
The first column shows two original frames of an underwater video. The second and
third columns show the background part and foreground part obtained by the PCP
procedure, respectively. The corresponding foreground masks calculated via the adap-
tive threshold procedure are shown in the forth column, and the fifth column shows
the extracted foreground.

In this paper, we propose a new foreground extraction method for under-
water videos based on sparse and low-rank matrix decomposition. If we stack
the underwater video frames as columns of a matrix, the stationary background
could be naturally modeled as the low-rank matrix component, and the moving
objects in the foreground could be modeled as the sparse matrix component. In
this way, the foreground and background separation problem is modeled as a
sparse and low-rank matrix decomposition problem, which can be solved via a
very convenient convex program called Principal Component Pursuit (PCP) [7].
To extract the objects in the foreground, we further process the sparse compo-
nent with adaptive threshold on each frame, then we discard the small connected
area so as to remove unwanted noise. In this way, the foreground mask and cor-
responding extracted foreground are obtained. We show the results obtained by
our method in Fig. 1 as an example. The performance of our proposed method
is evaluated on various underwater videos.
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As a reminder, the paper is organized as follows. In Section 2, we introduce
our proposed foreground extraction of underwater videos method based on sparse
and low-rank matrix decomposition in details. We demonstrate our method on
a variety of different underwater videos in Section 3. Finally, we conclude our
work in Section 4.

2 Foreground extraction based on sparse and low-rank

matrix decomposition

2.1 Foreground and background separation

Given a sequence of monitoring underwater video, we stack the video frames as
columns of a matrix M. As a result, for an n-frame video, each frame of which
is of m-pixel, M is an m× n matrix.

Modeling stationary background. For monitoring the underwater en-
vironments, the camera is placed in a fixed place. The background of captured
video is usually stationary except for smooth movements caused by water flowing
and/or light changes. The model of background needs to be flexible enough to
accommodate these smooth changes in the scene. In this sense, the background
part of the monitoring underwater videos could be modeled as an approximate
low-rank matrix L due to the correlation of frames.

Modeling foreground. The low-rank model will be violated due to the
presence of moving objects in the foreground. In the monitoring underwater
scenes, every frame may contain some moving marine species like fish in the
foreground. Swimming fish generally occupies only a fraction of pixels of each
video frame. In this sense, foreground objects could be presented as sparse errors.
In other words, we could use a sparse matrix S to model the foreground of the
monitoring underwater video.

Foreground and background separation via principal componen-

t pursuit. Putting all of these together, we model the background and fore-
ground separation problem as a problem of decomposing the matrix of underwa-
ter video into a low-rank matrix of background component and a sparse matrix
of foreground component. Mathematically, it is described as the following convex
optimization problem:

min
L,S

‖L‖∗ + λ‖S‖1, s.t. M = L+ S, (1)

which is dubbed as Principal Component Pursuit (PCP) [7], where ‖L‖∗ is
the nuclear norm of matrix L (i.e. the sum of all its singular values), ‖S‖1
is the ℓ1-norm of matrix S (i.e. the sum of absolute value of all its entries),
M,L,S ∈ R

m×n, and λ > 0 is a weighting parameter. The sparse and low-rank
matrix decomposition model and its variants have been applied in several image
processing and computer vision problems successfully, such as robust batch im-
age alignment [8], transform invariant low-rank texture [9], robust video restora-
tion [10], and so on. Many practical algorithms are well developed to solve it
efficiently [11,12,13].
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Using principal component pursuit, the background and foreground of un-
derwater videos could be well separated. The low-rank matrix captures the s-
tationary background. It is also tolerated to smooth changes in the background
caused by water flowing and global illumination changes. The sparse matrix rep-
resents the difference between the recorded underwater frame and the stationary
background, which captures the objects like swimming fish in the foreground.

2.2 Foreground extraction via adaptive threshold method

Once the foreground and background is well separated using PCP, we deal with
the sparse matrix obtained by PCP to further extract the objects in the fore-
ground. In order to avoid the effect of small noises, we propose an adaptive
threshold scheme. Specifically, for each obtained foreground frame si (si is the
sparse component vector of the ith frame mi), we set the threshold as

Ti = max (αmedian(abs(si)), ǫ), (2)

where median(·) is the median value of a vector, abs(·) is the absolute value, and
α, ǫ are constant parameters. For each frame, the pixels of the sparse component
si whose values are higher than Ti are marked as foreground. The threshold value
Ti is related to the median value of the sparse component of each frame, which
makes it robust and adaptive, and Ti is also restricted by a constant parameter ǫ
so that it is not so small. Furthermore, in order to discard the noises, we follow [5]
to remove the connected components containing area fewer than 15 pixels.

3 Experiments and Analysis

Fig. 2. Selected frames of the underwater video dataset. From top left to bottom right:
(1) Blurred (smoothed and low contrasted), (2) Complex Background, (3) Crowded,
(4) Dynamic Background (background moving: e.g. water waving), (5) Hybrid (various
features), (6) Camouflage Foreground Object (background and objects having similar
colors), (7-8) Luminosity Variations.

We evaluate the effectiveness of our proposed method on Underwater Bench-
mark Dataset For Target Detection Against Complex Background2 [14]. This

2 All of the videos we used in our experiments are downloaded from
http://f4k.dieei.unict.it/datasets/bkg modeling/.
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underwater benchmark dataset consists of seven categories of real-life underwa-
ter videos (spatial resolution ranging from 320×240 to 640×480, and frame rate
ranging from 5frames/s to 24frames/s), representing complex challenges in un-
derwater video background modeling. The seven categories are Blurred, Complex
Background, Crowded, Dynamic Background, Hybrid, Camouflage Foreground
Object, and Luminosity Variations, respectively. Examples of these videos are
shown in Fig. 2. In the experiments, to solve the principal component pursuit
(PCP) problem, we use the inexact augmented Lagrangian multiplier (IALM)
algorithm3, and the weighting parameter λ is fixed to be 1/

√

max (m,n). Final-
ly, in all of the examples, we choose p = 15, i.e. we discard connected area which
is smaller than 15-pixels.

Subjective evaluation. We apply our method on different categories of
underwater videos, and some results are shown in Fig. 3. As can be seen from
Fig. 3, the moving objects in the foreground are well extracted in all of the
Blurred, Crowded, and Luminosity Variations cases. First, the PCP procedure
makes background and foreground separated to a satisfied extend. Second, the
adaptive threshold procedure can well identify the real moving objects from the
sparse component obtained by PCP. We compare our method with the ground
truth masks. Notice that the ground truth masks are labeled on a collaborative
web-based platform [14], and they may be of low quality. In the Blurred cases
with smoothed and low contrasted images as shown in Fig. 3(a), compared with
the ground truth mask, our obtained mask contains even sharper edge such
as in the fish tail. In a recent report from Fish4Knowledge project 4, blurred
and highly blurred videos occupied 47.4%, while the normal ones only 12.9%
among about 350,000 videos. In the Crowed cases as shown in Fig. 3(b), the
extracted foreground by our method contains more fish including those hidden
behind rocks. Our method is also robust to illumination variations as shown in
Fig. 3(c).

PR curves with respect to varying thresholds. We follow Achanta et

al.’s two methodologies [15] to evaluate the accuracy of our extracted foreground.
In the first evaluation, we calculate the average Precision-Recall (PR) curves with
respect to varying thresholds for different categories of videos. Once the sparse
component matrix is obtained by PCP, we vary the threshold Ti from 0 to 128
with a step of 1, and compare the obtained foreground masks with the manually
labeled ground truth masks to generate precision-recall pairs. The PR curves of
seven categories of videos are shown in Fig. 4. In particular, our method achieves
better performance on Blurred videos, Crowded videos and Luminosity Varia-
tions videos than that on Complex Background videos, Camouflage Foreground
videos and Hybrid videos. The performance on Dynamic Background videos is
not so satisfying. This is reasonable because when the background changes fast,
the PCP may not well separate the moving objects in the foreground and the

3 The code for solving PCP problem using IALM is downloaded from
http://perception.csl.illinois.edu/matrix-rank/home.html.

4 http://groups.inf.ed.ac.uk/f4k/FINALPRES/F4KY3WP4Final.pdf
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(a) Blurred videos (α = 12, ǫ = 10)

(b) Crowded videos (α = 11, ǫ = 25)

(c) Luminosity Variations videos (α = 4, ǫ = 9)

Fig. 3. Subjective evaluation of our proposed method on different videos. For each
example (a,b,c) from top left to bottom right: (1) one frame of the original video,
(2) the low-rank part and (3) the sparse part obtained by the PCP procedure, (4)
the ground truth foreground mask, (5) the foreground mask and (6) the extracted
foreground obtained by our method.
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changes in the background, and thus the following adaptive threshold procedure
cannot distinguish the moving objects from the obtained sparse component.
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Fig. 4. Precision-recall curves of our method with the threshold ranging from 0 to 128
on the Underwater Benchmark Dataset.

F -measure evaluation. In the second evaluation, we use F -measure to
evaluate the performance of our approach, where F -measure is defined as F =
2PR
P+R

, and P , R are precision value and recall value, respectively. We calculate
an average F -measure of the video frames for each category, and the results are
listed in Table 1.

Table 1. The F -measure evaluation on different video categories

Blurred Complex Crowded Dynamic Hybrid Luminosity Camouflage

F -measure(%) 93.75 74.65 89.36 55.88 78.1 86.27 73.35

4 Conclusions and future work

In this paper, we propose an effective foreground extraction method for under-
water videos based on sparse and low-rank matrix decomposition. By modeling
the background as low-rank component and the foreground as sparse component,
the principal component pursuit algorithm is adopted for background and fore-
ground separation. Then, we design an adaptive threshold scheme to deal with
the obtained sparse matrix so as to extract foreground. Experiments on various
underwater videos verify the effectiveness of our method. It could be further
used for underwater video analysis such as fish counting, tracking, recognition,
etc. As foreground extraction is among the most sophisticated image processing
tasks, solutions that work well on as many categories as possible are expected.
We believe sparse and low-rank matrix decomposition could be an option to
achieve that goal.
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