
Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎
Contents lists available at ScienceDirect
Neurocomputing
http://d
0925-23

n Corr
Shenzhe

E-m
1 〈h

Pleas
(2015
journal homepage: www.elsevier.com/locate/neucom
DeepFish: Accurate underwater live fish recognition
with a deep architecture

Hongwei Qin a,b, Xiu Li a,b,n, Jian Liang b, Yigang Peng b, Changshui Zhang b

a Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
b Department of Automation, Tsinghua University, Beijing 100084, China
a r t i c l e i n f o

Article history:
Received 1 May 2015
Received in revised form
28 September 2015
Accepted 11 October 2015

Keywords:
Deep learning
Object recognition
Underwater
Cascaded network
x.doi.org/10.1016/j.neucom.2015.10.122
12/& 2015 Elsevier B.V. All rights reserved.

esponding author at: Graduate School at Sh
n 518055, China.
ail address: li.xiu@sz.tsinghua.edu.cn (X. Li).
ttp://www.oceannetworks.ca/〉.

e cite this article as: H. Qin, et al., De
), http://dx.doi.org/10.1016/j.neucom
a b s t r a c t

Underwater object recognition is in great demand, while the research is far from enough. The unrest-
ricted natural environment makes it a challenging task. We propose a framework to recognize fish from
videos captured by underwater cameras deployed in the ocean observation network. First, we extract the
foreground via sparse and low-rank matrix decomposition. Then, a deep architecture is used to extract
features of the foreground fish images. In this architecture, principal component analysis (PCA) is used in
two convolutional layers, followed by binary hashing in the non-linear layer and block-wise histograms
in the feature pooling layer. Then spatial pyramid pooling (SPP) is used to extract information invariant to
large poses. Finally, a linear SVM classifier is used for the classification. This deep network model can be
trained efficiently. On a real-world fish recognition dataset, we achieve the state-of-the-art accuracy of
98.64%.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Most recognition researches are focused on objects on the
ground. However, underwater object recognition is in great
demand. The past decade witnessed the fast development of ocean
observation. On the one hand, seafloor cabled observatories like
the Canada NEPTUNE and VENUS observatories1 result in unpre-
cedented volumes of underwater visual data. On the other hand, it
imposes great challenges for automatic data processing. Fish spe-
cies and population are among the important tasks of ocean
observation, benefiting for academic researchers like ocean sci-
entists and biologists [1], as well as commercial applications like
fish farming [2].

However, fish recognition is a challenging research issue. Some
special properties of underwater videos impose great challenges
for fish recognition. For instance, the videos are usually of low
quality because of the extreme conditions in the open sea. The
imaging devices are designed with low resolution because of the
huge amount of data. The ocean current may cause frequent
luminosity change. Absorption and scattering may cause light
attenuation, limiting the visibility, especially in the deeper sea.
Furthermore, the fish moves erratically and fast in 3D space and
enzhen, Tsinghua University,

epFish: Accurate underwate
.2015.10.122i
against coral and sand. All of the above result in the variety of fish
videos.

In this paper, we aim to find a solution to underwater object
recognition. We propose a framework for underwater live fish
recognition in unconstrained natural environment. The datasets
are captured by underwater cameras in the open sea. A deep
architecture is designed. The features are learned from the training
data, so domain knowledge of fish is not needed. This architecture
can be designed and learned efficiently compared to state-of-the-
art deep learning architectures carefully learned (by DNNs). Code
is available at https://github.com/qinhongwei/deepfish-release.
2. Related work

2.1. Fish recognition state-of-the-art

Prior fish recognition researches are mainly restricted to con-
strained environments. Lee et al. [3] used contour matching to
recognize fish in the fish tanks. Strachan et al. [4–6] used color and
shape descriptors to recognize fish transported along a conveyor
belt underneath a digital camera. Larsen et al. [7] derived shape
and texture features from an appearance model, classified with
LDA, and tested on a dataset containing 108 images of three fish
species under constrained condition (caught from the sea),
achieving an accuracy of 76%. There are also researches carried out
on underwater live fish. Spampinato et al. [8] combined texture
features and shape features and tested on a database containing
r live fish recognition with a deep architecture, Neurocomputing

https://github.com/qinhongwei/deepfish-release
www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122
mailto:li.xiu@sz.tsinghua.edu.cn
http://www.oceannetworks.ca/
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122

H. Qin et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎2
360 images of ten fish species, achieving an ave rage accuracy of
92%. Huang et al. [9] presented a Balance-Guaranteed Optimized
Tree (BGOT) algorithm to control the error accumulation in hier-
archical classification. They carried out an experiment on a dataset
containing 3179 fish images of 10 species collected from under-
water videos, and got an accuracy of 95%. Then, in [10], they fur-
ther used GMM to improve the reject option in hierarchical clas-
sification. With BGOTþGMM they got an average precision of 65%
on a larger dataset containing 24,150 images of 15 species.

Previous researches are not satisfying in four aspects. Firstly,
most of them concentrate on fish images under constrained con-
ditions. Secondly, they use small datasets containing a small
number of fish and limited fish species. Thirdly, all the current fish
recognition methods use hand-crafted features and these features
are often combined to improve performance, so these methods are
task-specific and are limited in generalization capability. Fourthly,
the algorithms are not efficient on large datasets. Last but most
importantly, the accuracy is not satisfying under constrained and
unconstrained conditions. However, the fast increasing unprece-
dented volumes of underwater visual data demands much more.
To meet that demand, we need accurate, efficient and robust
recognition on large unconstrained datasets.

2.2. Large scale image classification and deep learning

Image classification is a quite challenging task. Conventional
solutions for classification use manually designed low-level fea-
tures. For example, SIFT and HOG features are used for object
recognition, LBP and Gabor features are used for texture and face
classification. The carefully hand-crafted low-level features do
achieve good performance for some specific data and tasks.
However, effective features require domain knowledge and most
of them cannot simply apply to new conditions [11–13]. Besides,
the generalization capability of many conventional machine
learning tools like SVM, PCA and LDA, tend to saturate quickly as
the volume of the training set grows significantly [14].

Hinton et al. [11] proposed a method to learn features through
deep neural networks (DNNs), which significantly influences the
machine learning field in recent years. Deep learning aims to learn
multiple levels of representation of the data, from low-level to
high-level, to make sense of data such as images, sound and text.
High-level representation gives more information of the semantics
of the data.

Deep and large networks have shown impressive results when
used with large amounts of training data and scalable computa-
tion resources (thousands of CPU cores [15] and/or GPU computing
[16]). Many conventional tasks have benefitted from this technical
progress [17]. Most notably, Krizhevsky et al. [16] proved the
effectiveness of deep convolutional neural networks trained on
ImageNet [18] and achieved an excellent classification accuracy.

The success of deep learning in image classification lies in one
key ingredient which is the use of convolutional architectures [19–
21,16]. Generally, a deep neural network contains multiple train-
able cascaded stages, followed by a supervised classifier. And each
stage generally contains a convolutional filter bank layer, a non-
linear processing layer, and a feature pooling layer [13]. For the
filter bank layer, RBM [21] and auto-encoders or their variations
are used [12]. In general, Stochastic Gradient Descent (SGD) is used
to learn such a network.

Though deep learning based methods have been used in
many research fields [22,23], the most effective field is object
recognition. Recently, there is a rapid development of object
recognition algorithms. Before deep learning is widely used,
linear spatial pyramid matching using sparse coding was used
for image classification, achieving good performance on several
image classification benchmarks by using a single type of
Please cite this article as: H. Qin, et al., DeepFish: Accurate underwate
(2015), http://dx.doi.org/10.1016/j.neucom.2015.10.122i
descriptors [24]. Adaptive hypergraph learning and high-order
distance-based multi-view stochastic learning were investi-
gated for image classification tasks [25,26]. Fisher kernel was
also very successfully used [27]. More recently, architectures
like VGG [28,29], GoogLeNet [30] and PReLU-nets [31] achieved
better and better, even surpassing human-Level performance on
ImageNet classification task.

Learning a deep neural network for classification critically
depends on expertise of parameter tuning. A simple deep learning
baseline network for image classification named PCANet was
proposed recently [13]. This network is designed to be easy to train
and adaptable to different tasks. It is on par with the state-of-the-
art features (prefixed, hand-crafted, or learned from DNNs) for
some kinds of image classification tasks.

Inspired by the connection between general deep convolu-
tional neural networks and PCANet, we try to find an effective and
simple architecture to solve the underwater live fish recognition
problem.
3. Proposed framework

3.1. Foreground extraction of underwater videos

Underwater stationary cameras deployed in the ocean obser-
vation networks are often faced with extreme conditions caused
by various natural environment. Qin et al. [32] proposed a fore-
ground extraction method for underwater videos based on sparse
and low-rank matrix decomposition. Inspired by their method, we
extract the foreground fish masks from the videos, thus the
complex background can be eliminated. The preprocessing can
make it easier for the fish recognition task.

3.2. Fish recognition with deep architecture

Recently, in many object recognition systems, feature extrac-
tion stages are generally composed of a filter bank layer, a non-
linear transformation, and a feature pooling layer. For example, the
recently widely noted convolutional neural networks (CNN) is
such a system. A typical CNN consists of several layers, and can be
regarded as a stage. A convolutional filter bank layer aims to
extract local patterns. A nonlinear processing layer aims to form a
non-linear complex model. A feature pooling layer aims to
decrease feature maps’ resolution. Deep CNN may contain several
stages. In the network we use, the PCA filters are chosen for the
filter bank layer, the binary hashing is chosen for the nonlinear
layer, and the block-wise histograms of the binary codes are cho-
sen for the feature pooling layer. Then spatial pyramid pooling
(SPP) is used to extract information invariant to large poses. The
final output is fed to an SVM classifier.

Fig. 1 illustrates the pipeline of the framework.

3.2.1. Input images
Suppose N input training images are given. First, we need to

resize the images to the same size m� n.

3.2.2. Layer size selection
We choose an architecture with two stages. The stage here is

not completely the same as that in the DNNs. We regard the
convolutional filter bank layer as a stage. So the two stages are
actually two convolutional layers.

3.2.3. Convolutional layer 1
We set the patch size (i.e. 2D filter size) as k1 � k2 at all the

convolutional layers. Given an input image, we take a k1 � k2 patch
around each pixel. Then we subtract the patch mean from each
r live fish recognition with a deep architecture, Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122

SPP SVM

Foreground Extraction Layer 1

Convolution Layer 2

Non-linear Layer Feature Pooling
Layer

Spatial Pyramid
Pooling SVM ClassifierConvolution

Fig. 1. The pipeline of the proposed framework. PCA filters are chosen for the filter bank layer, the binary hashing is chosen for the nonlinear layer, and the block-wise
histograms of the binary codes are chosen for the feature pooling layer. Then spatial pyramid pooling (SPP) is used to extract information invariant to large poses. The final
output is fed to a linear SVM classifier.

H. Qin et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3
patch, and get the mean-removed patch. So, for a given color
image Xi, for each channel c (c is r; g; b respectively), we get
Xc;i ¼ ½xc;i;1; xc;i;2;…; xc;i;mn�, where xc;i;j is a mean-removed patch.
Repeat the process for each input image, and we get

Xc ¼ ½Xc;1;Xc;2;…;Xc;N �ARk1k2�Nmn : ð1Þ
Another parameter is the number of filters in each convolutional
layer, denoted by Li for the ith convolutional layer. We use PCA to
minimize the reconstruction error within a set of orthogonal fil-
ters,

min
VAR3k1k2�L1

JX�VVTX J2F ;

s:t: VTV ¼ IL1 ; ð2Þ
where X ¼ ½XT

r ;X
T
g ;X

T
b �T , IL1 is an identity matrix of size L1 � L1, V is

a matrix consisting of a set of eigenvectors. Solve the optimization
problem, and we get the L1 principal eigenvectors of XXT. Then the
PCA filters of the first stage can be denoted as

W1
l ¼matk1 ;k2 ;3ðqlðXXT ÞÞARk1�k2�3; l¼ 1;2;…; L1; ð3Þ

where qlðXXT Þ is the lth principal eigenvector of XXT, matk1 ;k2 ;3ðvÞ is
a function that maps vAR3k1k2 to a matrix WARk1�k2�3. The main
variation of the mean-removed training patches can be expressed
by the leading eigenvectors. Finally, the output of the first stage is

Ili ¼ IinW
1
l ; i¼ 1;2;…;N; ð4Þ

where Ii is the ith input image, and Wl
1 is the lth filter of the PCA

filter bank in the first stage.

3.2.4. Convolution layer 2
This layer is basically the same as the last layer. The output of

the last layer is used as the input of this one. The filter number is
L2. Besides this, the other processing are all the same. For each
input from the last layer, we get L1 outputs. Hence, the output of
this layer is L1L2. Finally, for each input Ili, the output of the second
layer is

Ol
i ¼ IlinW

2
ln

n oL2

ln ¼ 1
: ð5Þ

where W2
ln is the lnth filter of the PCA filter bank.

If we want to build a deeper architecture, we can just add more
stages (convolutional layers) to repeat the above process. The final
number of the output filters would be∏nstage

i ¼ 1 Li, where nstage is the
number of stages.

3.2.5. Nonlinear layer
After the second layer, for each of the L1 inputs Ii

l, we get L2

real-valued outputs IlinW
2
ln

n oL2

ln ¼ 1
. In this layer, these outputs are

binarized to HðIlinW2
ln Þ

n oL2

ln ¼ 1
, where Hð�Þ is a Heaviside step
Please cite this article as: H. Qin, et al., DeepFish: Accurate underwate
(2015), http://dx.doi.org/10.1016/j.neucom.2015.10.122i
function, whose output is one for positive entries and zero
otherwise. This processing can also be called hashing. Then we
convert the L2 binary bits to a decimal number, denoted as

Tl
i ¼

XL2

ln ¼ 1

ðIlinW2
ln Þ: ð6Þ

The above process converts the L2 outputs back into a single
integer-valued image, whose pixel value ranges from 0 to 2L2 �1.
As a result, the outputs number for now turn to L1 again.

3.2.6. Feature pooling layer
After the nonlinear layer, we get L1 outputs. In this layer, each

of the L1 outputs is partitioned into H blocks and the histogram of
the decimal values in each block is computed. Then, we con-
catenate all the H histograms into one vector, denoted as HistðTl

iÞ.
Finally, the ultimate output is defined as

f i ¼ ½HistðTl
iÞ;…;HistðTL1

i Þ�T AR2L2 L1H : ð7Þ

As can be seen, the output or the feature has a dimension of L12
L2

for now. The local blocks are overlapped, and the specific over-
lapping ratio is another parameter of the network, which can be
set according to different tasks. Actually, the histogram offers
some degree of translation invariance in the extracted features,
just like in hand-crafted features such as Scale-invariant Feature
Transform (SIFT) [33] or Histogram of Oriented Gradients (HOG)
[34], and average or max pooling process in ConvNet
[20,19,35,16,36].

3.2.7. Spatial pyramid pooling (SPP)
As fish images consists of complex poses, we connect the

Spatial Pyramid Pooling [37] process to the above output. This
process can extract information invariant to large poses.

3.2.8. Classifier
We choose SVM classifier to complete the recognition. Gen-

erally, Softmax classifier is another widely adopted option. In the
experiment section, we will discuss why we choose SVM.

As a conclusion, the parameters of the architecture include the
filter size k1; k2, the number of stages (convolutional layers), the
number of filters in each stage L1; L2, the block size for local his-
tograms, the overlapping ratio between blocks and the pyramid
vector.
4. Experiments and results

In this section, we carry out a series of experiments. We
implement our architecture with Matlab, and use Liblinear [38] for
r live fish recognition with a deep architecture, Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122

Fig. 2. From top left to bottom right, representative species of 23 clusters of fish. There are totally 27,370 images acquired from live videos captured from the open sea. The
images shown are ideal images because many of the others in the dataset are of low quality, such as blur, various depth of focus, or complex background.

Table 1
The fish species distribution.

ID Species Number

1 Dascyllus reticulatus 12,112
2 Plectroglyphidodon dickii 2683
3 Chromis chrysura 3593
4 Amphiprion clarkii 4049
5 Chaetodon lunulatus 2534
6 Chaetodon trifascialis 190
7 Myripristis kuntee 450
8 Acanthurus nigrofuscus 218
9 Hemigymnus fasciatus 241
10 Neoniphon sammara 299
11 Abudefduf vaigiensis 98
12 Canthigaster valentini 147
13 Pomacentrus moluccensis 181
14 Zebrasoma scopas 90
15 Hemigymnus melapterus 42
16 Lutjanus fulvus 206
17 Scolopsis bilineata 49
18 Scaridae 56
19 Pempheris vanicolensis 29
20 Zanclus cornutus 21
21 Neoglyphidodon nigroris 16
22 Balistapus undulatus 41
23 Siganus fuscescens 25

Total 22,370

H. Qin et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
SVM classifier. Many data process and parameter setting details
are discussed to improve the performance of our method. In the
following section, we will compare our method using deep
learning architecture with conventional methods.

4.1. Dataset

We evaluate the effectiveness of the deep architecture on the
Fish Recognition Ground-Truth dataset made by the Fish4-
Knowledge (F4K) project [39]. This underwater live fish dataset is
acquired from a live video dataset captured from the open sea.
There are totally 27,370 verified fish images of 23 clusters and each
cluster is presented by a representative species. The fish species
are manually labeled by following instructions from marine biol-
ogists. The fish images and masks are both given. Fig. 2 is an
example of the 23 fish species. These RGB fish images have various
sizes ranging from about 20�20 to about 200�200 pixels. The
images shown in Fig. 2 are already resized to the same size.
Besides, the number of different fish species is quite imbalanced.
The number of the most frequent species is about 1000 times of
the least one. So it is quite difficult to achieve a high accuracy over
the whole dataset.

Images in the dataset vary significantly not only in fish position,
scale and orientation within each class, but also in colors and even
textures. With the fish masks given in the dataset, we can first
eliminate the background of the fish image. To use the deep
architecture, the images should be resized to the same size. Con-
sidering the average size of the images, we resize all the images to
47�47, which is neither too large to be very computation resource
consuming, nor too small to lose too much information. The total
images are divided into three subsets: 5/7 for training, 1/7 for
validation, and 1/7 for test. The distribution of the fish species in
the dataset is shown in Table 1. As the number of different fish
species is quite imbalanced, each species is divided in the same
proportion randomly.

4.2. Architecture parameters setting

We train of network with the following parameters, which are
tuned according to the validation set. For the convolutional filter
bank layer, the filter sizes are k1 ¼ 5, k2 ¼ 13 respectively, and the
numbers of the filters are L1 ¼ 32, L2 ¼ 6 respectively. For the
histogram layer, the block size is set as 8�8, and the overlapping
ratio between blocks 0.6. Finally, SPP is connected to the output
layer (histogram layer). The maximum response in each bin of
block histograms is pooled in a pyramid of 4�4, 2�2, and 1�1
subregions. After that we get 21ð ¼ 4� 4þ2� 2þ1� 1Þ pooled
Please cite this article as: H. Qin, et al., DeepFish: Accurate underwate
(2015), http://dx.doi.org/10.1016/j.neucom.2015.10.122i
histogram features having a dimension of L12
L2 . Then, a SVM

classifier is adopted to perform the classification. To reduce the
impact of data imbalance, we use data augmentation on part of the
training data. Finally, we achieve an accuracy of 98.23% on the test
set. We denote this method with DeepFish-SVM.

The parameters are optimized by linear search. In the
experiments, we observe that (1) larger convolution kernel size
(filter size) in the second stage brings performance improve-
ment, while it cannot be too large because of the image size and
memory limitation. (2) Larger L1 (number of first stage filters)
brings performance improvement. (3) Generally more para-
meters bring better performance, while it is limited by many
aspects, such as input image size, parameter matching and
computer hardware.

4.3. Result after data augmentation on the training set

Data augmentation is widely used in deep learning archi-
tectures to enlarge the training data set to get better general-
ization [16]. Considering the imbalance of the data distribution, we
r live fish recognition with a deep architecture, Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122

Fig. 3. Error instances. (a) The 55 falsely classified fish images out of 3908 test images with DeepFish-SVM-aug. (b) The 53 falsely classified fish images out of 3908 test
images with DeepFish-SVM-aug-scale. (c) The 66 falsely classified fish images out of 3908 test images with DeepFish-Softmax-aug. (d) The 59 falsely classified fish images
out of 3908 test images with DeepFish-Softmax-aug-scale.

Table 2
Comparison of fish recognition accuracy (%) of various methods on the test set.
Scale means scaling the feature vector value to 100 times larger. Aug means part
data augmentation on the training set. Deep-CNN is our CNN architecture. The bold
means accuracy is higher than 98%.

Method Accuracy (%)

LDAþSVM 80.14
Raw-pixel SVM 82.92
Raw-pixel Softmax 87.56
Raw-pixel Nearest Neighbor 89.79
VLFeat Dense-SIFT 93.58
DeepFish-SVM (our) 98:23
DeepFish-SVM-aug (our) 98:59

H. Qin et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5
enlarge the training set for the species whose image number is less
than 300. Specifically speaking, the images are randomly rotated
with an angle between �101 and 101, and added to the original
training set. The process is repeated for 5 times. Then we use the
same parameters tuned above to train the network. On the test set,
we get a higher accuracy of 98.59%. We denote this method with
DeepFish-SVM-aug. The 55 error instances of the 3908 test images
are shown in Fig. 3(a).

We only perform rotation on the training data. Because the
foreground extraction procedure and foreground image resizing
make the fish images unified in size, the translation and zoom
would not be necessary.
DeepFish-SVM-aug-scale (our) 98:64
DeepFish-Softmax-aug (our) 92.55
DeepFish-Softmax-aug-scale (our) 98:49
Deep-CNN (our) 98:57
4.4. Final classifier: SVM vs Softmax

After we extract the features using our architecture, the fea-
tures and labels are fed into an SVM classifier. Various classifiers
are used at the last stages in modern deep architectures. Softmax
classifier is frequently used. In our experiment, we also train a
Softmax classifier with the features of the training dataset. The
accuracy on the test dataset is 92.55%. We denote this method
with DeepFish-Softmax-aug. However, we scale the feature to 100
times larger, and the accuracy rises to 98.31%. The falsely classified
fish image number is 66, as shown in Fig. 3(c). We further tune the
weight decay and termination tolerance parameters of Softmax,
and the accuracy rises to 98.49%. The falsely classified fish image
number is 59, as shown in Fig. 3(d). We denote this method with
DeepFish-Softmax-aug-scale.

Inspired by this improvement, we scale the features to 100
times larger and train another SVM classifier model. The
accuracy is 98.64%, which gets a minor improvement compared
with before. We denote this method with DeepFish-SVM-aug-
scale. The falsely classified fish image number is 53, as shown
in Fig. 3(b).
Please cite this article as: H. Qin, et al., DeepFish: Accurate underwate
(2015), http://dx.doi.org/10.1016/j.neucom.2015.10.122i
4.5. Results analysis

4.5.1. Comparisons
To make comparison, we also carry out experiments using

conventional machine learning tools as baseline methods. With a
widely used baseline method LDA (to extract features) þ SVM
(classifier) [38], using foreground fish images (each one reshaped
as a vector) as input, the accuracy is 80.14%. With nearest neighbor
method, the accuracy is 89.79%. As baseline methods, we train an
SVM classifier on the raw pixels. With this classifier, we obtain an
accuracy of 82.98%. We also train a Softmax classifier, with which
we obtain an accuracy of 87.56%. The popular VLFeat [40] library is
also used as one of the baseline methods. We use PHOW features
(dense multi-scale SIFT descriptors), Elkan k-means for fast visual
word dictionary construction, spatial histograms as image
descriptors, a homogeneous kernel map to transform a Chi2 sup-
port vector machine (SVM) into a linear one, and SVM classifiers.
The results are listed in Table 2.
r live fish recognition with a deep architecture, Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122

Table 3
When train:val:test ¼ 5:1:1. The distribution of the 55 falsely classified images.
Total number means the total number of that fish species. False number means the
number of the falsely classified images.

ID Species False number Total number Accuracy (%)

1 Dascyllus reticulatus 12 1730 99.31
2 Plectroglyphidodon dickii 11 383 97.13
3 Chromis chrysura 7 513 98.64
4 Amphiprion clarkii 0 578 100.00
5 Chaetodon lunulatus 0 362 100.00
6 Chaetodon trifascialis 2 27 92.59
7 Myripristis kuntee 1 64 98.44
8 Acanthurus nigrofuscus 11 31 64.52
9 Hemigymnus fasciatus 0 34 100.00
10 Neoniphon sammara 0 43 100.00
11 Abudefduf vaigiensis 1 14 92.86
12 Canthigaster valentini 1 21 95.24
13 Pomacentrus moluccensis 0 26 100.00
14 Zebrasoma scopas 2 13 84.62
15 Hemigymnus melapterus 2 6 66.67
16 Lutjanus fulvus 1 29 96.55
17 Scolopsis bilineata 1 7 85.71
18 Scaridae 0 8 100.00
19 Pempheris vanicolensis 0 4 100.00
20 Zanclus cornutus 1 3 66.67
21 Neoglyphidodon nigroris 1 2 50.00
22 Balistapus undulatus 1 6 83.33
23 Siganus fuscescens 0 4 100.00

Total 55 3908 98.59

Table 4
When train:val:test ¼ 5:1:1. The distribution of the 219 falsely classified images.
Total number means the total number of that fish species. False number means the
number of the falsely classified images.

ID Species False number Total number Accuracy (%)

1 Dascyllus reticulatus 32 5190 99.38
2 Plectroglyphidodon dickii 25 1149 97.82
3 Chromis chrysura 35 1539 97.73
4 Amphiprion clarkii 7 1734 99.60
5 Chaetodon lunulatus 1 1086 99.91
6 Chaetodon trifascialis 10 81 87.65
7 Myripristis kuntee 12 192 93.75
8 Acanthurus nigrofuscus 21 93 77.42
9 Hemigymnus fasciatus 3 102 97.06
10 Neoniphon sammara 4 129 96.90
11 Abudefduf vaigiensis 9 42 78.57
12 Canthigaster valentini 12 63 80.95
13 Pomacentrus moluccensis 1 78 98.72
14 Zebrasoma scopas 12 39 69.23
15 Hemigymnus melapterus 8 18 55.56
16 Lutjanus fulvus 5 87 94.25
17 Scolopsis bilineata 5 21 76.19
18 Scaridae 2 24 91.67
19 Pempheris vanicolensis 0 12 100.00
20 Zanclus cornutus 2 9 77.78
21 Neoglyphidodon nigroris 2 6 66.67
22 Balistapus undulatus 8 18 55.56
23 Siganus fuscescens 3 12 75.00

Total 219 11,724 98.13

H. Qin et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
The deep network itself is proved effective. And the higher
accuracy brought by the data augmentation process may result from
the fact that the fish poses and orientations are various and slightly
and randomly rotating the images reduces that influence. As we can
see in Fig. 3(b). Errors mainly result from wrong annotations of
foreground mask, confusing colors and low resolution.

Besides, training the network is efficient, because the filter learning
does not involve regularized parameters and does not require
numerical optimization solver. With above parameters and data aug-
mentation, the training procedure takes about 3 hours on an Intel
(R) Xeon(R) CPU E5-2650 2.60 GHz computer (only one core is used).

As for larger-sized fish, we think that the architecture also applies.
The generalization of deep architectures are widely proved in recent
deep learning research. We just need to vary the hyper parameters.

4.5.2. Partition of datasets
To make sure that the dataset partition is appropriate, we also

carry out another experiment, in which we decrease the training
set to 3/7, and increase the test set to 3/7. With the same training
settings before, the accuracy is 98.13%, which is only a tiny decline,
indicating that our framework performs well.

In the first experiment, the total images are divided into three
subsets: 5/7 for training, 1/7 for validation, and 1/7 for test. The
distribution of the falsely classified images are shown in Table 3.

In the second experiment, the total images are divided into three
subsets: 3/7 for training, 1/7 for validation, and 3/7 for test. The
distribution of the falsely classified images are shown in Table 4

From Tables 3 and 4, we can see that for each species, the larger
image number brings better accuracy in general.

4.5.3. The difference of Softmax and SVM
In our deep architecture, we adopted a linear SVM layer instead

of commonly used Softmax layer as classifier. According to the
experiments in [41] that such switching is effective in that the
objective function of hinge loss has higher positive correlation
with test error. Our results with both kinds of classifier types
demonstrate increasing performance of this switching. Mean-
while, hinge loss brings the convenience of screening the samples
Please cite this article as: H. Qin, et al., DeepFish: Accurate underwate
(2015), http://dx.doi.org/10.1016/j.neucom.2015.10.122i
outside the margin, which makes it easier to accelerate training
[17]. That is why we use a linear SVM classifier layer at the end of
our architecture.
5. Visualizing and understanding the architecture

To make a better understanding of the architecture, in this
section, we visualize the convolutional layer filters and outputs of
each convolutional layer.
5.1. Filter visualization

In the first PCA stage, there are 32 convolutional kernels of size
5� 5� 3, which is shown in Fig. 4(a). In the second PCA stage,
there are 6 convolutional kernels of size 13�13, which is shown in
Fig. 4(b). The first stage filters are very nice and smooth, indicating
that they are nicely learned. The color and grayscale features are
clustered to some extent. The grayscale filters extract high-
frequency features, while the color filters extract low-frequency
features. The second stage filters are also very smooth, well-
formed and free of noisy patterns. We can infer from the visuali-
zations that the PCA stages are effective.
5.2. Feature visualization

The outputs of the first PCA stage are 32 images of size 47�47,
which are shown in Fig. 5(a). The outputs of by the second PCA
stage are 192 images of size 47�47, which are shown in Fig. 5(b).
We can see that the first PCA stage outputs are relatively dense
and the second are more sparse and localized. In conventional
methods, which features to extract are usually carefully decided by
experts. While in our architecture, filters are learned and feature
extraction are fully automatic without domain knowledge.
r live fish recognition with a deep architecture, Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122

Fig. 4. Convolutional layer filters visualization of our Deepfish-SVM-aug architecture. (a) The 32 filters (each of size 5� 5� 3) learned by the first PCA stage. (b) The 6 filters
(each of size 13�13) learned by the second PCA stage. Notice that the first stage filters are very nice and smooth, indicating that they are nicely learned. The grayscale filters
extract high-frequency features, while the color filters extract low-frequency features. The second stage filters are also very smooth, well-formed and free of noisy patterns.

Fig. 5. Typical convolutional layer features visualization of our Deepfish-SVM-aug
architecture. (a) The 32 output images (each of size 47�47) of the first PCA stage.
(b) The 192 output images (each of size 47�47) of the second PCA stage filters.
Notice that the first PCA stage outputs are relatively dense and the second are more
sparse and localized.

H. Qin et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7

Please cite this article as: H. Qin, et al., DeepFish: Accurate underwate
(2015), http://dx.doi.org/10.1016/j.neucom.2015.10.122i
6. CNN architecture for fish recognition

Convolutional Neural Networks are widely used in object
recognition tasks [19,16]. To explore a best architecture for
underwater object recognition, we design a CNN architecture to
make comparison with the previous architecture.

The overall architecture of our CNN is depicted in Fig. 6.
The net contains six layers with weights, of which the first three

are convolutional and the remaining three are fully connected. The
output of the last fully-connected layer is fed to a 23-way Softmax
which produces a distribution over the 23 class labels.

This net maps an input image xi, via a series of layers, to a
probability vector ŷi over the 23 different classes. Each layer
consists of the following operations: (i) convolution of the pre-
vious layer output (or, in the case of the 1st layer, the input image)
with a set of learned filters (optimized weights); (ii) passing the
responses through a rectified linear function reluðxÞ ¼maxðx;0Þ;
(iii) max pooling over local neighborhoods and (iv) a local contrast
operation that normalizes the responses across feature maps.

6.1. Architecture details

As demonstrated in Fig. 6, the first convolutional layer filters the
47� 47� 3 input image with 70 kernels of size 5� 5� 3 with a
stride of 1 pixel. The outputs are max pooled with kernel size 3�3,
fed to ReLU layer and normalized. The second and the third con-
volutional layers repeat the above process, besides that the filters
kernel size are both adjusted to 3�3. In detail, the second convolu-
tional layer filters the (pooled, rectified, and normalized) outputs of
the first convolutional layer with 110 kernels of size 3� 3� 70, and
the third layer has 180 kernels of size 3� 3� 110 connected to the
outputs of the second layer. The fully-connected layers have 200, 22,
23 neurons in turn. In total, the network has about 1 million para-
meters. We denote this method with Deep-CNN.

6.2. Training details

The model is trained on the same dataset as before. The pre-
process is also the same. We implement the architecture with Caffe
[42] framework. Stochastic gradient descent with a mini-batch size of
64 is used to update the parameters. The base learning rate is set to
10�2, in conjunction with a momentum term of 0.9 and weight
decay of 0.0005. An equal learning rate for all layers is used and
adjusted manually throughout training. When the validation error
comes to plateaus, the learning rate is decreased by a factor of 10.
r live fish recognition with a deep architecture, Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122

Fig. 6. The architecture of our CNN, showing the definition of different layers. The network's input is 6627-dimensional, and the number of neurons of each layer is given by
37030-13310-4500-200-22-23.

training iterations

va
l a

cc
ur

ac
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
training part 1

learning rate: 0.01

training iterations ×104
0 2 4 6 8 10

va
l a

cc
ur

ac
y

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
training part 2

learning rate: 0.001

training iterations ×104

0 100 200 300 400 500 600 0 2 4 6 8 10

va
l a

cc
ur

ac
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
the whole training process

learning rate: the whole

Fig. 7. Validation accuracy vs. training iterations: the training process contains two parts, the first of which has a fixed learning rate of 0.01, and the second 0.001, as shown
in the left and middle columns. The right column shows the validation accuracy change in the whole training process.

H. Qin et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎8
Dropout [43] is used in all the fully-connected layers but the last one
with a rate of 0.5. The weights in each convolutional layer are initi-
alized from a zero-mean Gaussian distribution with standard devia-
tion of 0.01. For the weights in each fully-connected layer, the stan-
dard deviation is set to 0.005. The biases in the second convolutional
layer and the last fully-connected layer are initialized with the con-
stant 1. The remaining layers are initialized with the constant 0.

6.3. Results

After 65,000 iterations, we get a validation accuracy of 98.75%
(49 wrong instances). The test accuracy is 98.57% (56 wrong
instances). The validation accuracy vs. training iterations is shown
in Fig. 7. The result is comparable with the previous architecture,
but has much more parameters (learned filters) and requires
optimization at the filter learning stage. Furthermore, this network
is carefully tuned to get satisfying convergence. In the following
section, we will look into the model by visualization.

6.4. Feature and filter visualization

Now we have a close look at the features and weights by
visualizing them.

The activations of the three convolutional layers during the
forward pass are shown in Fig. 8. The corresponding convolutional
filters (weights) are illustrated in Fig. 9.

The first layer activations look relatively blobby and dense. In
the following layers the activations become more sparse and
localized. This is quite interpretable because we can infer the
class-specific features. While in conventional hand-crafted meth-
ods, these features are often discovered and decided by experts
with domain knowledge, for example, biologists.
Please cite this article as: H. Qin, et al., DeepFish: Accurate underwate
(2015), http://dx.doi.org/10.1016/j.neucom.2015.10.122i
As for the convolutional filters, the first layer is looking directly at
the raw pixel data, so the filters looks relatively nice and smooth. The
following two layers' weights are not as interpretable, but still well-
formed. However, compared with the filters of DeepFish-SVM-aug in
Fig. 4, the filters are not as nice, but outperform them in number. They
both can extract appropriate features for the following network layers
and eventually recognition.
7. Conclusion

In this paper, we aim to find a solution to accurate underwater
object recognition. We propose an effective underwater live fish
recognition framework based on a simple cascaded deep network,
whose performance is comparable with our carefully designed and
tuned deep CNN architecture. The features are learned from the
training data, so no domain knowledge of fish is required.

Experiments on an underwater live fish dataset demonstrate
that the recognition accuracy achieves the state-of-the-art. With
the proposed framework, we expect to advance underwater live
fish recognition research, explore underwater object recognition
issues, and benefit the ocean biologists, ecologists, as well as
commercial applications like fish farming. The framework we use
can be easily extended to other recognition tasks. The method
with which we choose net parameters and classifiers can serve as
a reference. As we did not use complicated networks or any special
tricks like very deep network with much more parameters, tens of
times data augmentation on the whole dataset, or ensemble of
models, although they usually can achieve better results. (Code is
available at https://github.com/qinhongwei/deepfish-release.)

As pointed out by Bengio and LeCun in [44], end-to-end
learning systems that have many parameters and few built-in
r live fish recognition with a deep architecture, Neurocomputing

https://github.com/qinhongwei/deepfish-release
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122

Fig. 8. A typical visualization of the CNN architecture convolutional layer activations (rectified by ReLU) given an input image of fish. Each box shows an activation map
corresponding to some filter. From left to right: (a) 64 outputs of size 23�23 by the first convolutional layer (64 out of 70 are shown). (b) 64 outputs of size 11�11 by the
second convolutional layer (64 out of 110 are shown). (c) 100 outputs of size 5�5 by the second convolutional layer (100 out of 180 are shown). Notice that the last two
layers' activations are mostly sparse (shown in black) and localized.

Fig. 9. Visualization of the CNN architecture convolutional layer weights. Each box shows a filter. From left to right: (a) 64 convolutional kernels of size 5� 5� 3 learned by
the first convolutional layer on the 47� 47� 3 input images (64 out of 70 are shown). (b) 24 convolutional kernels of size 3� 3� 70 learned by the second convolutional
layer on the outputs of the previous layer (24 out of 110 are shown). (c) 16 convolutional kernels of size 3� 3� 110 learned by the second convolutional layer on the outputs
of the previous layer (16 out of 180 are shown). Notice that the kernels in (b) and (c) are reshaped for visualization.

H. Qin et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9
assumptions can make use of more data and more compute power
far more easily than systems that require hand-engineering of
domain-specific knowledge. What we design in this paper is
exactly such a system. With large and well labeled datasets, deep
architectures can be powerful and effective.

In the future, we would like to figure out a way to reduce CPU
memory consuming for the filter learning procedure and SVM
classifier model training procedure. We also plan to write a GPU
package for the architecture to further reduce time consuming for
larger-scale recognition tasks.
Acknowledgements

This work is supported by National Natural Science Foundation
of China (Grant No. 71171121/61033005) and National 863 High
Technology Research and Development Program of China (Grant
No. 2012AA09A408).
Please cite this article as: H. Qin, et al., DeepFish: Accurate underwate
(2015), http://dx.doi.org/10.1016/j.neucom.2015.10.122i
References

[1] M.R. Heithaus, L.M. Dill, Food availability and tiger shark predation risk
influence bottlenose dolphin habitat use, Ecology 83 (2) (2002) 480–491.

[2] A. Rova, G. Mori, L.M. Dill, One fish, two fish, butterfish, trumpeter: recog-
nizing fish in underwater video, in: MVA, 2007, pp. 404–407.

[3] D.-J. Lee, R.B. Schoenberger, D. Shiozawa, X. Xu, P. Zhan, Contour matching for
a fish recognition and migration-monitoring system, in: Optics East, Interna-
tional Society for Optics and Photonics, 2004, pp. 37–48.

[4] N. Strachan, P. Nesvadba, A.R. Allen, Fish species recognition by shape analysis
of images, Pattern Recognit. 23 (5) (1990) 539–544.

[5] N. Strachan, Recognition of fish species by colour and shape, Image Vis.
Comput. 11 (1) (1993) 2–10.

[6] D. White, C. Svellingen, N. Strachan, Automated measurement of species and
length of fish by computer vision, Fish. Res. 80 (2) (2006) 203–210.

[7] R. Larsen, H. Olafsdottir, B.K. Ersbøll, Shape and texture based classification of
fish species, Image Anal., 2009, 745–749.

[8] C. Spampinato, D. Giordano, R. Di Salvo, Y.-H.J. Chen-Burger, R.B. Fisher, G.
Nadarajan, Automatic fish classification for underwater species behavior
understanding, in: Proceedings of the First ACM International Workshop on
Analysis and Retrieval of Tracked Events and Motion in Imagery Streams, ACM,
Firenze, Italy, 2010, pp. 45–50.
r live fish recognition with a deep architecture, Neurocomputing

http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref1
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref1
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref1
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref4
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref4
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref4
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref5
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref5
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref5
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref6
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref6
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref6
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122

H. Qin et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎10
[9] P.X. Huang, B.J. Boom, R.B. Fisher, Underwater live fish recognition using a
balance-guaranteed optimized tree, in: Computer Vision–ACCV 2012, Springer,
Daejeon, Korea, 2013, pp. 422–433.

[10] P.X. Huang, B.J. Boom, R.B. Fisher, Gmm improves the reject option in hierarchical
classification for fish recognition, in: 2014 IEEEWinter Conference on Applications of
Computer Vision (WACV), IEEE, Steamboat Springs CO., USA, 2014, pp. 371–376.

[11] G. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets,
Neural Comput. 18 (7) (2006) 1527–1554.

[12] Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new
perspectives, IEEE Trans. Pattern Anal. Mach. Intell. 35 (8) (2013) 1798–1828.

[13] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, Y. Ma, PCANet: a simple deep learning
baseline for image classification?, arXiv preprint arXiv:1404.3606.

[14] Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Deepface: closing the gap to human-
level performance in face verification, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2013, pp. 1701–1708.

[15] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker,
K. Yang, Q.V. Le, et al., Large scale distributed deep networks, in: Advances in
Neural Information Processing Systems, 2012, pp. 1223–1231.

[16] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep
convolutional neural networks, in: Advances in Neural Information Processing
Systems, Stateline NV, USA, 2012, pp. 1097–1105.

[17] J. Jin, K. Fu, C. Zhang, Traffic sign recognition with hinge loss trained con-
volutional neural networks, IEEE Trans. Intell. Transp. Syst. 15 (5) (2014) 1991–
2000. http://dx.doi.org/10.1109/TITS.2014.2308281.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: a large-scale
hierarchical image database, in: 2009 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2009, IEEE, Miami, FL, USA, 2009, pp. 248–255.

[19] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[20] I.J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, Y. Bengio, Maxout
networks, arXiv preprint arXiv:1302.4389.

[21] H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations, in: Proceedings
of the 26th Annual International Conference on Machine Learning, ACM,
Montreal, Canada, 2009, pp. 609–616.

[22] D. Tao, X. Lin, L. Jin, X. Li, Principal component 2-d long short-term memory
for font recognition on single Chinese characters, IEEE Trans. Cybern.

[23] J. Bai, Y. Wu, J. Zhang, F. Chen, Subset based deep learning for rgb-d object
recognition, Neurocomputing (2015) 280–C292.

[24] J. Yang, K. Yu, Y. Gong, T. Huang, Linear spatial pyramid matching using sparse
coding for image classification, in: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2009, IEEE, Miami, FL, USA, 2009, pp. 1794–1801.

[25] J. Yu, D. Tao, M. Wang, Adaptive hypergraph learning and its application in
image classification, in: IEEE Trans. Image Process. 21 (7) (2012) 3262–3272.

[26] J. Yu, Y. Rui, Y.Y. Tang, D. Tao, High-order distance-based multiview stochastic
learning in image classification, IEEE Trans. Cybern. 44 (12) (2014) 2431–2442.

[27] F. Perronnin, J. Sánchez, T. Mensink, Improving the fisher kernel for large-scale
image classification, in: Computer Vision–ECCV 2010, Springer, Heraklion, Crete,
Greece, 2010, pp. 143–156.

[28] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, arXiv preprint arXiv:1409.1556.

[29] K. Chatfield, K. Simonyan, A. Vedaldi, A. Zisserman, Return of the devil in the
details: delving deep into convolutional nets, arXiv preprint arXiv:1405.3531.

[30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, A. Rabinovich, Going deeper with convolutions, arXiv preprint
arXiv:1409.4842.

[31] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-
level performance on imagenet classification, arXiv preprint arXiv:1502.01852.

[32] H. Qin, Y. Peng, X. Li, Foreground extraction of underwater videos via sparse
and low-rank matrix decomposition, in: 2014 ICPR Workshop on Computer
Vision for Analysis of Underwater Imagery (CVAUI), IEEE, Stockholm, Sweden,
2014, pp. 65–72.

[33] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J.
Comput. Vis. 60 (2) (2004) 91–110.

[34] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in:
2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR 2005, vol. 1, IEEE, San Diego, CA, USA, 2005, pp. 886–893.

[35] K. Jarrett, K. Kavukcuoglu, M. Ranzato, Y. LeCun, What is the best multi-stage
architecture for object recognition?, in: 2009 IEEE 12th International Con-
ference on Computer Vision, IEEE, Kyoto, Japan, 2009, pp. 2146–2153.

[36] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu, Y.L. Cun,
Learning convolutional feature hierarchies for visual recognition, in: Advances in
Neural Information Processing Systems, Vancouver, Canada, 2010, pp. 1090–1098.

[37] K. Grauman, T. Darrell, The pyramid match kernel: discriminative classification
with sets of image features, in: 2005 Tenth IEEE International Conference on
Computer Vision, ICCV 2005, vol. 2, IEEE, Beijing, China, 2005, pp. 1458–1465.

[38] C.-C. Chang, C.-J. Lin, Libsvm: a library for support vector machines, ACM
Trans. Intell. Syst. Technol. (TIST) 2 (3) (2011) 27.

[39] B.J. Boom, P.X. Huang, J. He, R.B. Fisher, Supporting ground-truth annotation of
image datasets using clustering, in: 2012 21st International Conference on
Pattern Recognition (ICPR), IEEE, Tsukuba, Japan, 2012, pp. 1542–1545.

[40] A. Vedaldi, B. Fulkerson, VLFeat: an open and portable library of computer
vision algorithms, in: Proceedings of the International Conference on Multi-
media, ACM, Firenze, Italy, 2010, pp. 1469–1472.

[41] Y. Tang, Deep learning using linear support vector machines, arXiv preprint
arXiv:1306.0239.
Please cite this article as: H. Qin, et al., DeepFish: Accurate underwate
(2015), http://dx.doi.org/10.1016/j.neucom.2015.10.122i
[42] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
T. Darrell, Caffe: Convolutional architecture for fast feature embedding, in:
Proceedings of the ACM International Conference on Multimedia, ACM,
Orlando, Florida, USA, 2014, pp. 675–678.

[43] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, J. Mach.
Learn. Res. 15 (1), 2014, 1929–1958.

[44] Y. Bengio, Y. LeCun, et al., Scaling learning algorithms towards ai, Larg.-Scale
Kernel Mach. 34 (5) (2007).

Hongwei Qin received his B.S. degree in Automation
from Tsinghua University, Beijing, China, in 2012,
where he is currently working toward the Ph.D. degree
in the Department of Automation. His research inter-
ests are in the areas of deep learning, computer vision
and image processing.
Xiu Li received her Ph.D. degree in computer integrated
manufacturing in 2000. Since then, she has been
working in Tsinghua University. Her research interests
include data mining, business intelligence systems,
knowledge management systems and decision support
systems.
Jian Liang received his B.S. degree in Automation from
Huazhong University of Science and Technology,
Wuhan, China, in 2012. He is currently working toward
the Ph.D. degree in the Department of Automation,
Tsinghua University, Beijing. His research interests are
in the areas of deep learning and pattern recognition.
Yigang Peng received the bachelor's degree from
Beijing University of Posts and Telecommunications,
Beijing, China, in 2007, and the Ph.D. degree from
Tsinghua University, Beijing, in 2012. His research
interests include computer vision, image processing,
and computer network.
Changshui Zhang received his B.S. degree from the
Peking University, Beijing, China, in 1986, and Ph.D.
degree from Tsinghua University, Beijing, China, in
1992. He is currently a Professor of the Department of
Automation, Tsinghua University. He is an Editorial
Board Member of Pattern Recognition. His interests
include artificial intelligence, image processing, pattern
recognition, machine learning and evolutionary
computation.
r live fish recognition with a deep architecture, Neurocomputing

http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref11
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref11
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref11
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref12
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref12
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref12
dx.doi.org/10.1109/TITS.2014.2308281
http://arXiv:1302.4389
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref23
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref23
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref23
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref26
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref26
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref26
http://arXiv:1409.1556
http://arXiv:1405.3531
http://arXiv:1409.4842
http://arXiv:1502.01852
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref33
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref33
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref33
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref38
http://refhub.elsevier.com/S0925-2312(15)01731-2/sbref38
http://arXiv:1306.0239
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122
http://dx.doi.org/10.1016/j.neucom.2015.10.122

	DeepFish: Accurate underwater live fish recognition with a deep architecture
	Introduction
	Related work
	Fish recognition state-of-the-art
	Large scale image classification and deep learning

	Proposed framework
	Foreground extraction of underwater videos
	Fish recognition with deep architecture
	Input images
	Layer size selection
	Convolutional layer 1
	Convolution layer 2
	Nonlinear layer
	Feature pooling layer
	Spatial pyramid pooling (SPP)
	Classifier

	Experiments and results
	Dataset
	Architecture parameters setting
	Result after data augmentation on the training set
	Final classifier: SVM vs Softmax
	Results analysis
	Comparisons
	Partition of datasets
	The difference of Softmax and SVM

	Visualizing and understanding the architecture
	Filter visualization
	Feature visualization

	CNN architecture for fish recognition
	Architecture details
	Training details
	Results
	Feature and filter visualization

	Conclusion
	Acknowledgements
	References

