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Abstract—In this paper, we propose a novel method for
automatic depth estimation from color images using parameter
transfer. By modeling the correlation between color imagesand
their depth maps with a set of parameters, we get a database of
parameter sets. Given an input image, we extract the high-level
features to find the best matched image sets from the database.
Then the set of parameters corresponding to the best match are
used to estimate the depth of the input image. Compared to the
past learning-based methods, our trained model only consists of
trained features and parameter sets, which occupy little space.
We evaluate our depth estimation method on several benchmark
RGB-D (RGB + depth) datasets. The experimental results are
comparable to the state-of-the-art, while the model size isvery
small and very suitable for mobile devices, demonstrating the
promising performance of our proposed method.

Index Terms—depth estimation, parameter transfer, 3D recon-
struction.

I. I NTRODUCTION

I MAGES captured with conventional cameras lose the depth
information of the scene. However, scene depth is of great

importance for many computer vision tasks. 3D application-
s like 3D reconstruction for scenes (e.g., Street View on
Google Map), robot navigation, 3D videos, and free view
video(FVV) [1], [2] all rely on scene depth. Depth information
can also be useful for 2D applications like image enhancing [3]
and scene recognition [4]. Recent RGB-D imaging devices like
Kinect are greatly limited on the perceptive range and depth
resolution. Neither can they extract depth for the existing2D
images. Therefore, depth estimation from color images has
been a useful research subject.

In this paper, we propose a novel depth estimation method
to generate depth maps from single still images. Our method
applies to arbitrary color images. We build the connection
between image and depth with a set of parameters. A pa-
rameter sets database is constructed, and the parameter sets
are transferred to input images to get the corresponding depth
maps. Some estimation results are shown in Fig. 1.

As a reminder, the paper is organized as follows. In Sec-
tion II, the related techniques are surveyed. In Section III, we
introduce our proposed DEPT (depth estimation by parameter
transfer) method in details. We demonstrate our method on
the RGB-D benchmark datasets in Section IV. Finally, we
conclude our work in Section V.
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II. RELATED WORKS

In this section, we introduce the techniques related to this
paper, which are respectively depth estimation from a single
image, and parameter transfer.

A. Depth Estimation from Single Images

The reason why depth estimation from a single image is
possible lies in that there are some monocular depth cues
in a 2D image. Some of these cues are inferred from local
properties like color, shading, haze, defocus, texture variations
and gradients, occlusions and so on. Global cues are also
crucial to inferring depth, as the ability humans have. So,
integrating local and global cues of a single image to estimate
depth is reasonable.

There are semi-automatic and automatic methods for depth
estimation from single images. Horryet al. [5] proposetour
into the picture, where the user interactively adds planes to
an image to make animation. The work of Zhanget al. [6]
requires the user to add constrains manually to images to
estimate depth.

Automatic methods for single image depth estimation come
up in recent years. Hoiemet al. [7] proposeautomatic photo
pop-up, which reconstructs an outdoor image using assumed
planar surfaces of it. Delageet al. [8] develop a Bayesian
framework applied to indoor scenes. Saxenaet al. [9] pro-
pose a supervised learning approach, using a discriminatively-
trained Markov Random Field (MRF) that incorporates multi-
scale local and global image features. Then, they improve this
method in [10]. After that, depth estimation from predicted
semantic labels is proposed by Liuet al. [11]. A more sophisti-
cated model called Feedback Enabled Cascaded Classification
Models (FE-CCM) is proposed by Liet al. [12]. One typical
depth estimation method is Depth Transfer, developed by
Karschet al. [13]. This method first builds a large scale RGB-
D images and features database, then acquires the depth of the
input image by transferring the depth of several similar images
after warping and optimizing procedures.

There are several recent works that try to solve the depth
estimation problem and semantic segmentation problem u-
nitedly. Ladicky et al. [14] propose to predict pixel-wise
semantic class labels to improve both depth estimation and
semantic segmentation performance. Eigenet al. [15], [16] use
a multi-scale convolutional architecture to refine local depth
prediction with global information. Wanget al. [17] propose
to decompose the image into local segments for region-level
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(a) Test images

(b) Estimated depth maps by DEPT

Fig. 1. Selected images and corresponding depth maps estimated by DEPT. The darker the red is, the further (from the imaging device) the objects are. The
darker the blue is, the closer the objects are.

depth and semantic prediction under the guidance of global
layout.

Besides, there are several other efforts on depth estimation
with unified global and local information. Liuet al. [18] use
continuous variables encoding the depth of the superpixelsin
the input image and discrete variables representing relation-
ships between neighboring superpixels to perform inference
through a graphical model. Zhuoet al. [19] propose to use
a hierarchical representation of the indoor scene, and refine
the depth map guided by global layout. Liu and Shenet
al. [20] propose a method to refine depth map predicted
by convolutional networks by continuous conditional random
field. In the work by Baiget al. [21], [22], they express the
global depth map of an image as a linear combination of a
depth basis learned from examples. The basis is actually a
dictionary of the training dataset, and the images near the
cluster centroids are picked as basis elements. Our concurrent
and independent work also use cluster controids but with a
totally different way, which we will introduce in detail.

Under specific conditions, there are other depth extract
methods, such as dark channel prior proposed by Heet al. [23],
proved effective for hazed images.

The method closest to ours is the parametric model de-
veloped by Wanget al. [24] for describing the correlation
between single color images and depth maps. This work treats
the color image as a set of patches and derives the correlation
with a kernel function in a non-linear mapping space. They

get convincing depth map through patch sampling. However,
this work only demonstrates the effectiveness of the model,
and can’t estimate depth with an arbitrary input image. Our
improvements are two-fold: we extend this model from one
image to many, and we transfer parameter set to an arbitrary
input image according to best image set match.

B. Parameter Transfer

We carry out a survey on transfer methods in the field of
depth estimation. The non-parametric scene parsing by Liu
et al. [25] avoids explicitly defining a parametric model and
scales better with respect to the training data size. The Depth
Transfer method by Karschet al. [13] leverages this work
and assumes that scenes with similar semantics should have
similar depth distributions after densely aligned. Their method
contains three stages. First, given an input image, they findK
best matched images in RGB space. Then, theK images are
warped to be densely aligned with the input. Finally, they use
an optimization scheme to interpolate and smooth the warped
depth values to get the depth of the input.

Our work is different in three aspects. First, instead of depth,
we transfer parameter set to the input image, so we don’t need
post process like warping. Second, our database is composed
of parameter sets instead of RGB-D images, so the database
occupies little space. Third, the depth values are computed
with the transferred parameter set directly, so we don’t need
an optimization procedure after transfer.
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III. DEPT: DEPTH ESTIMATION BY PARAMETER

TRANSFER

In this section, we first introduce the modeling procedure
for inferring the correlation between color images and depth
maps. Then, we introduce the parameter transfer method in
detail.

A. The Parametric Model

The prior work of Wanget al. [24] proposed a model
to build the correlation between a single imageI and its
corresponding depth mapD with a set of parameters. We
extend this by using a set of similar imagesIS and their
corresponding depth mapDS. So the parameters contain
information of all the images in the set.

We regard each color image as a set of overlapped fixed-
size color patches, of which the size will be discussed later.
For each image, we sample the patchesx1, x2, ..., xp and their
corresponding depth values from RGB-D image set. To avoid
over-fitting, we only samplep patches from each image. In
our experiment, we setp as 1000, and the samples account for
0.026% of the total patches in one image. We use a uniform
sampling method,i.e., we separate the image into grids and
select samples uniformly from all the grids. By denotingN
as the number of images in an image set, totally we sample
N × p patches. Specially, for single image,N = 1.

1) Modeling the Correlation between Image and Depth:
After the sampling procedure, we model the correlation by
measuring the sum squared error between the depthd̂ mapped
with the sampled color patches and the ground truth depthd.
The model is written as

E =

p×N
∑

i=1

|tr(WT

n
∑

j=1

γjφ(xi ∗ fj))− di|
2 , (1)

whereE is the sum squared estimation error,p is the number
of sample patches per image,N is the number of images in
the image set,fj is the filters,n is the number of filters and
set as 9 in all the experiments. If set larger, the algorithm is
expected to get better results, but bring larger cost.φ is the
kernel function to map the convolved patches and sum them
up toone patch, γj is the weight of each convolved patch,W
is the weight matrix, whose size is the same of theone patch,
aiming at integrating the overall information from each patch.

Eq. 1 can be rewritten as

E =

p×N
∑

i=1

|wTφ(XiF )γ − di|
2 , (2)

where Xi is a matrix reshaped from patchxi. The row
size of Xi is the same asfi, while F = [f1, f2, ..., fn],
γ = [γ1, γ2, ..., γn]

T . w is the result of concatenating all the
entries ofW .

At the image level,F describes the texture gradient cues
of the RGB image by extracting the frequency information.γ
describes the variance of filters. We use Principle Component
Analysis (PCA) to initializeF , and optimize it afterwards. As
for the size of filter, we need to balance between efficiency

and effect. However, we useW to integrate the global infor-
mation, so we can choose smaller sized filters to reduce time
consuming.φ(·) is set asφ(x) = log(1 + x2), as it has been
proven effective in [24].

2) Estimating Model Parameters:First, we rewrite Eq. 2
as

E = ‖Mφ(XF )γ − d‖2
2
, (3)

and

E = ‖Γφ(FT X̂)w − d‖2
2
, (4)

whereX is got by concatenating all theXi in Eq. 2.X̂ is got
by concatenating all theXT

i . Each row ofM is w
T , and each

row of Γ is γT . So Eq. 3 is a least square problem ofγ, and
Eq. 4 is a least square problem ofw. Then we minimizeE by
optimizing the filtersF . Finally we get a set of parameters,
consisting ofF , γ, andw. The detailed method for solving
this can be found in our previous work [24].

B. Parameter Transfer

Our parameter transfer procedure, outlined in Fig. 2, has
three stages. First, we build a parameter set database using
training RGB-D images. Second, given an input image, we find
the most similar image sets using high-level image features,
and transfer the parameter set to the input image. Third, we
compute the depth of the input image.

1) Parameter Set Database Building:Given a RGB-D
training dataset, we compute high-level image features for
each image. Here, we use GIST [26] features, which can be
used to measure similarities of images. Then, we categorize
the training images toN sets, using k-means cluster method.
Next, we get the central GIST feature for each image set. For
each image set, the corresponding parameter set is obtained
using our parameter estimate model. The central GIST features
and corresponding parameter sets compose our parameter set
database. Actually, this database is so small as to occupy much
less space compared to the RGB-D datasets.

2) Image Set Matching:Given an input image, we compute
its GIST feature and find the best matched central GIST
feature from our trained database. Then the parameter set
corresponding to the best matched central GIST feature (i.e.
the central GIST feature of the most similar image set) is
transferred to the input image. We define the best match as

Gbest = min
i=1,2,...,N

‖Ginput −Gi‖ , (5)

whereGinput denotes the GIST feature of the input image,
andGi denotes the central GIST feature of each image set.

As the most similar image set matches the input closely in
feature space, the overall semantics of the scenes are similar.
At the low level, the cues such as the texture gradient, texture
variation, and color are expected to be roughly similar to some
extent. With the model above, the parameters connecting the
images and depth maps should be similar. So, it is reasonable
to transfer the parameter set to the input image.
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Fig. 2. Our pipeline for estimating depth. First we build a parameter set database, then the parameter set is transferredto the input image according to the
best matched GIST feature. Finally, the parameter set is used to estimate the depth.

3) Depth Estimation:We use the color patches of the input
image and the transferred parameter set to map the estimation
depth. The computational formula is:

d̂ = Mφ(XF )γ , (6)

whereX is the patches,F is the filters.γ is the weight to
balance the filters.M is the weight matrix. These parameters
are all from the parameter set.

IV. EXPERIMENT

In this section, we evaluate the effectiveness of our DEPT
method on single image RGB-D datasets.

A. RGB-D Datasets

We use the Make3D Range Image Dataset [27]. The dataset
is collected using 3D scanner and the corresponding depth
maps using lasers. There are totally 534 images separated into
two parts, which are the training part containing 400 images
and the testing part containing 134 images, respectively. The
color image resolution is2272 × 1704, and the ground truth
depth map resolution is55 × 305. Befor training, we resize
the depth map resolution to the same size of the color image,
so RGB and D (Depth) have pixel-wise correspondence.

B. Image Cluster

We compute the GIST features for each image in the
training dataset. Then we use k-means algorithm to cluster
the images into N sets, here we setN as 30. The images are
well separated according to the scene semantics. The silhouette
plot in Fig. 3 measures how well-separated the resulting image
sets are. Lines on the right side of0 measure how distant that
image is from neighboring image sets. Lines on the left of
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Silhouette Value
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Fig. 3. Silhouette plot of the k-means cluster result. Each line represents an
image. Lines on the right side of0 measure how distant that image is from
neighboring image sets. Lines on the left of0 indicate that image is probably
assigned to the wrong set. The vertical axis indicates different clusters (image
sets).

0 indicate that image is probably assigned to the wrong set.
The vertical axis indicates different clusters (image sets). As
we can see, most of the images are well clustered. As for
the choosing ofN , initially we choose it by observing the
silhouette plot, then we try a series of values with a step of
10. The results around 30 are close, and 30 is the best. The
cluster number can also be set according to existing pattern
classification methods (e.g.methods to find bestk in k-means
algorithm [28], [29]). We believe N should not be too large
or too small. Too large N may set similar scenes apart while
too small N may result in large scene variety in one set.

An example image set is shown in Fig. 5. It can be seen
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(a) One clustered image set

(b) The corresponding depth maps

Fig. 5. One example image set after image cluster procedure.(a) is a clustered image set, containing 18 semantic similarimages, (b) are their corresponding
depth maps. The depth distributions in the images are roughly similar.
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Fig. 4. Energy decline curves of the 30 image sets.E is on a ln scale.

that the clustered images have roughly similar semantic scene.
The depth distributions also seem similar, as are shown in the
color images as well as the depth maps.

C. Parameter Sets Estimation

For each image set, we estimate the corresponding model
parameters. The overlapped patch size is set15×15. The filter
size is set as3 × 3. We separate each image into grids and
uniformly sample 1000 patches per image. So for anN sized
image set, totally1000×N patches are sampled, which occupy
0.026% of the whole image set. We initialize the filters with
PCA method, and optimize all the parameters using warm-
start gradient descent method. The iteration stop condition is
E < 10−6. In our experiment, the energy (i.e., the sum squared
errorsE) declines as Fig. 4 shows. As can be seen, most of
the curves come to a steady state after about 1000 iterations.
The smaller the steady energy is, the more similar the images
in that set are.

For each image set, we obtain one optimized parameter set.
The 30 parameter sets and the corresponding cluster centroids
(the center of the GIST features in each image set) make up
the parameter sets database.

D. Depth Estimation by Parameter Transfer

For each of the testing 134 images, we find the best matched
image set from the parameter sets database and compute the
depth maps using the computational formula of Eq. 6.

1) Quantitative Comparison with Previous Methods:We
calculate three common error metrics for the estimated depth.
DenotingD̂ as the estimated depth andD as the ground truth
depth, we calculateRE (relative error):

RE =
|D̂−D|

D
, (7)

LE (log
10

error):

LE = | log
10
(D̂)− log

10
(D)| , (8)

andRMSE (root mean squared error):

RMSE =

√

√

√

√

P
∑

i=1

(D̂i −Di)2/P , (9)

TABLE I
AVERAGE ERROR AND DATABASE SIZE COMPARISON OF VARIOUS

ESTIMATE METHODS.

Method RE LE RMSE Trained Database

Depth MRF [9] 0.530 0.198 16.7 -
Make3D [27] 0.370 0.187 - -
Feedback Cascades [12] - - 15.2 -
Deep CNN Fields [20] 0.314 0.119 8.60 140 MB
Depth Transfer [13] 0.361 0.148 15.1 2.44 GB
DEPT with GIST(ours) 0.489 0.182 16.9 1.47 MB
DEPT with CNN(ours) 0.421 0.172 16.7 1.25 MB

whereP is the pixel number of a depth map.
Error measure for each image is the average value of all the

pixels on the ground truth resolution scale (55 × 305). Then
the measures are averaged over all the 134 images to get final
error metrics, which are listed in Table I.

As can be seen, our results are better than Depth MRF [9] in
view of RE andLE, better than Make3D [27] in view ofLE.
Totally speaking, the results of DEPT are comparable with the
state-of-the-art learning based automatic methods. Especially,
DEPT only requires a very small sized database, and once the
database is built, we can compute the depth directly. Built
from the 400 training RGB-D images that occupy 628MB
space, our database size is only 188KB (0.03%). As a contrast,
the trained database of Depth Transfer [13] occupies 2.44GB1

(about 4 times of the original dataset size). Though our
method hasdisadvantagein average errors over the Depth
Transfer [13], we have largeadvantagesin database space
consuming and computer performance requirement(in [13],
the authors claim Depth Transfer requires a great deal of
data (GB scale) to be stored concurrently in memory in the
optimization procedure), which are especially crucial when the
database grows in real applications. Recent deep CNN based
depth estimation methods get lower errors. Essentially, our
convolutional operation and optimization method is similar to
convolutional neural network with only one layer. From this
point of view, our method uses much less parameters with
good results, if implemented on high-end GPU, as deep CNNs
are, our method would gain much higher efficiency.

Further more, our method also has advantages in some of
the estimation effects, as is detailed in the following qualitative
evaluation.

2) Qualitative Evaluation:A qualitative comparison of our
estimated depth maps, depth maps estimated by Depth Trans-
fer [13] and the ground truth depth maps are demonstrated in
Fig. 6 and Fig. 7. As can be seen, our estimated depth maps are
visually reasonable and convincing, especially in the details
like texture variations (e.g., the tree in the second columnof
Fig. 6) and relative depth (e.g., the pillars’ depth in the last
column of Fig. 6 is well estimated by our DEPT method, while
Depth Transfer [13] estimates wrong). Actually, some of our
results are even more accurate than the ground truth (e.g.,
in the third column in Fig. 7, there is a large part of wrong

1Implemented with the authors’ public codes at
http://research.microsoft.com/en-us/downloads/29d28301-1079-4435-9810-
74709376bce1/
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(a) Test images

(b) Ground truth depth maps

(c) Estimated depth maps by DEPT (our method)

(d) Estimated depth maps by Depth Transfer [13]

Fig. 6. Performance comparison: scenes of streets, squaresand trees. (a) show some test images containing streets, squares or trees, (b) are corresponding
ground truth depth maps, (c) are estimated depth maps by DEPT(our method), (d) are estimated depth maps by Depth Transfer[13].
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(a) Test images

(b) Ground truth depth maps

(c) Estimated depth maps by DEPT (our method)

(d) Estimated depth maps by Depth Transfer [13]

Fig. 7. Performance comparison: scenes of buildings. (a) show some test images containing buildings, (b) are corresponding ground truth depth maps, (c)
are estimated depth maps by DEPT (our method), (d) are estimated depth maps by Depth Transfer [13]
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(a) Test images

(b) Ground truth depth maps

(c) Estimated depth maps by DEPT (our method)

(d) Estimated depth maps by Depth Transfer [13]

Fig. 8. Performance comparison: indoor scenes. (a) show some test images containing buildings, (b) are corresponding ground truth depth maps, (c) are
estimated depth maps by DEPT (our method), (d) are estimateddepth maps by Depth Transfer [13]

depth in the building area of the ground truth depth map).
The ground truth maps have some scattered noises, which may
result from the capturing device. While the noises in our depth
maps are less because of the using of overall information in
the image set. But we must point out that the sky areas in
our depth maps are not as pleasing, which may result from
the variation of sky color and texture among various images
in a set, especially when the cluster result is biased. This may
result in the increase of average error in the previous metrics.
However, as the increasing of RGB-D images acquired by
depth imaging devices, our database can expand easily due
to the extremely small space consuming, which means we
may get more and more accurate matched parameter sets for
existing RGB images and video frames.

E. Evaluation on Indoor Datasets

We also implement an experiment on the NYU Depth V2
Dataset [30], which consists of 1449 indoor RGB-D images
captured with Kinect. We use theLabeled Dataset2 , i.e.,
1449 densely labeled pairs of aligned RGB and depth images.

2http://cs.nyu.edu/∼silberman/datasets/nyudepth v2.html

The dataset is partitioned into 795 training images and 654
testing images. When training DEPT, we cluster the training
dataset to 80 sets, guided by k-means silhouette plot and linear
search. One example of the cluster set is shown in Figure. 9.
Quantitative results are shown in Table. II. In addition to the
three standard metrics, we also report the metrics used in [14],
defined as

1

N

N
∑

p=1

[[max(
dp
gp

,
gp
dp

) = δ < t]]× 100%, (10)

where gp is the ground-truth of pixelp, dp is the cor-
responding estimated depth,N is the number of pixels,
t = 1.25, 1.252, 1.253 is the threshold, and[[·]] denotes
the indicator function. We can observe that DEPT achieves
comparable quantitative results with much less space and time
consumption.

Qualitative results are shown in Figure. 8. We can see DEPT
gets not so smooth results (we did not use smoothing operation
as Depth Transfer did), but infers more details on the edges.
This may be useful when an application cares more about
edges of depth map.

http://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
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Fig. 9. One example image set after image cluster procedure on NYU. The clustered image set contains 9 semantic similar images.

In addition, the testing procedure (654 images) consumes
about 4 hours with DEPT on our computer (Intel Xeon E3-
1330 V2 CPU, 16GB RAM, 64bit Windows 7, without any
algorithm optimization), while it takes about 45 hours with
Depth Transfer [13].

F. Replace GIST With Deep CNN

Following prior work [31], [32], we observe that convo-
lutional neural networks have good scene descriptions for
images. Thus, we follow the method of [32] to compute
the representations of the RGB images. The CNN feature
extraction process is illustrated in Fig. 10. For each of the
training images, the representation is computed as follows:

v = CNNθc(I), (11)

where CNNθc(I) transforms the pixels of imageI into
a 4096-dimensional activation of the fully connected layer
immediately before the classifier, i.e., the 1000-way softmax
layer. The CNN parametersθc contain approximately 60
million parameters and the architecture closely follows the
network of Krizhevskyet al. [33], but we chop off the final
1000-way softmax layer. In this way, after network forwarding,
each image is represented as a 4096-dimensional vector.

This vector can be treated as features of the image, which
will be referred to below as CNN features. We replace GIST
features with CNN features in the previous framework.

We carry out experiments with the new framework. The
result is listed in Table. I and Table. II. We observe decrease
of all the error indicators. This performance is better than
the originally proposed method in the conference version
of this work [34]. In the mean time, though CNN features
can improve the performance, it increases time consuming
and model size. Because for now, most of the CNN based
methods rely on high performance GPUs. It is too slow on
personal computers, not to mention mobile devices. So, we
need to balance the performance, speed and model size in real
applications. However, we can expect more improvement of
DEPT when better algorithms for semantic scene matching are
proposed.

V. CONCLUSION AND FUTURE WORKS

In this paper, we propose a lightweight, effective and fully
automatic technique to restore depth information from single
still images. Our depth estimation by parameter transfer (DEP-
T) method is novel in that we use clustered scene semantics
similar image sets to model the correlation between RGB
information and D (depth) information, obtaining a database
of parameter sets and cluster centers. DEPT only requires
the trained parameter sets database which occupies much
less space compared with previous learning based methods.
Experiments on RGB-D benchmark datasets show quantita-
tively comparable to the state-of-the-art and qualitatively good
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TABLE II
EXPERIMENTAL RESULTS ONNYU INDOOR DATASET.

Method RE LE RMSE δ < 1.25 δ < 1.252 δ < 1.253 Database Time

Depth Transfer [13] 0.374 0.134 1.12 49.81% 79.46% 93.75% 1.14 GB 45 hours
DC-Depth [18] 0.335 0.127 1.06 51.55% 82.32% 95.00% - -
Zhuo et. al [19] 0.305 0.122 1.04 52.50% 83.77% 96.16% - -
DEPT with GIST (ours) 0.392 0.151 1.19 48.50% 79.02% 93.12% 465 KB 4 hours
DEPT with CNN (ours) 0.353 0.130 1.11 51.24% 80.62% 94.35% 460 KB 4 hours
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Fig. 10. An illustration of the CNN feature extraction architecture. A224× 224 crop of an image (RGB) is presented as the input. It is convolved with 96
different filters, each of size7× 7, using a stride of 2 in both x and y. The resulting feature mapsare then: (i) passed through a rectified linear function (not
shown), (ii) pooled (max within3× 3 regions, using stride 2) and (iii)contrast normalized across feature maps to give 96 different55× 55 element feature
maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from the top convolutional layer as input in
vector form (6× 6× 256 = 9216 dimensions). The output of layer 7 are our CNN features in vector form(4096 dimensions). The final layer is a 1000-way
softmax function, whose output is 1 predicted class out of 1000.

results. The estimated depth maps are visually reasonable and
convincing, especially in the details like texture variations
and relative depth. Further more, as the increasing of RGB-D
images acquired by depth imaging devices, our database can
expand easily due to the extremely small space consuming.
As our model is only about one MB, it is very suitable
to use on mobile devices (The code will be released upon
publication). In the future work, we would like to improve
the cluster accuracy by exploring more accurate similarity
metrics that are applicable to our image and depth correlation
model. We plan to build a larger RGB-D image dataset as more
data brings better performance with our method. Finally, we
suppose it is also meaningful to improve the depth estimation
performance for video frames by using optical flow features
or other features related to time coherence.
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