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Abstract—In this paper, we propose a novel method for II. RELATED WORKS
automatic depth estimation from color images using paramesdr ) ) ) _ )
transfer. By modeling the correlation between color imagesand In this section, we introduce the techniques related to this

their depth maps with a set of parameters, we get a database of paper, which are respectively depth estimation from a sing|
parameter sets. Given an input image, we extract the high-iel image, and parameter transfer.

features to find the best matched image sets from the database
Then the set of parameters corresponding to the best match ar

used to estimate the depth of the input image. Compared to the . . .
past learning-based methods, our trained model only congisof A Depth Estimation from Single Images

trained features and parameter sets, which occupy little spce. The reason why depth estimation from a single image is
We evaluate our depth estimation method on several benchmfr . . .

RGB-D (RGB + depth) datasets. The experimental results are possmle llles in that there are some monocular depth cues
comparable to the state-of-the-art, while the model size isery N @ 2D image. Some of these cues are inferred from local

small and very suitable for mobile devices, demonstratinghe properties like color, shading, haze, defocus, texturatians

promising performance of our proposed method. and gradients, occlusions and so on. Global cues are also
Index Terms—depth estimation, parameter transfer, 3D recon- crucial to inferring depth, as the ability humans have. So,
struction. integrating local and global cues of a single image to eséma

depth is reasonable.
There are semi-automatic and automatic methods for depth

|. INTRODUCTION IS i _
estimation from single images. Horst al. [5] proposetour

MAGES captured with conventional cameras lose the deqi, yhe picture where the user interactively adds planes to
information of the scene. However, scene depth is of gregl image to make animation. The work of Zhaeal. [6]

importance for many computer vision tasks. 3D applicatiopz jires the user to add constrains manually to images to

s like 3D reconstruction for scenee.§, Street View oN ostimate depth.

G.gogllezvl\\/llapi, r_gboltl nallwgatlon, 32 v;ﬂe%s, ?r:‘d ffrer?ml{lew Automatic methods for single image depth estimation come
video( ) [, [4) all rely on scene depth. Depth informani up in recent years. Hoierat al. [7] proposeautomatic photo

can also be useful for 2D applications like image enhan@hg [ . : .
it i : . ‘pop-up which reconstructs an outdoor image using assumed
and scene recognitionl[4]. Recent RGB-D imaging devices I;%; H g g

Kinect tv limited th i d4d anar surfaces of it. Delaget al. [8] develop a Bayesian
Inect are greatly imited on th€ perceptive range and GeRgl 1 qyork applied to indoor scenes. Saxetaal. [9] pro-
resolution. Neither can they extract depth for the exisfiy

pose a supervised learning approach, using a discrimaigtiv

images. Therefore, depth e_st|mat|on from color images hﬁ‘gined Markov Random Field (MRF) that incorporates multi-
been a useful research subject.

. o scale local and global image features. Then, they impraige th
In this paper, we propose a novel depth estimation methgg

¢ te denth f inale still i 0 h thod in [10]. After that, depth estimation from predicted
0 generate depth maps from singie stll iImages. Lur Met@@, ,niic japels is proposed by latial. [11]]. A more sophisti-
applies to arbitrary color images. We build the connectio

b . d denth with ¢ A %hted model called Feedback Enabled Cascaded Classificatio
etween image an e_pt with a set of parameters. A Qs e (FE-CCM) is proposed by l&t al. [12]. One typical

X . . rd'seeﬁth estimation method is Depth Transfer, developed by
are transferred t(.) mp_ut images to get the qurespond'nmdeRarschet al. [13]. This method first builds a large scale RGB-
maps. Some estimation results are shown in Hig. 1. D images and features database, then acquires the depth of th

As a reminder, the paper is organized as follows. In Seuti ; o
. . mput image by transferring the depth of several similargesm
tion[ll the related techniques are surveyed. In Sedfidnié o - warping and optimizing procedures.

introduce our proposed DEPT (depth estimation by parametetl_here are several recent works that try to solve the depth

ELaensteG%-rBett:‘::cr;r:ngfl;[a:jlzlra\gftsdienmgztte IslurszﬁTOdwggtimation problem and semantic segmentation problem u-
V- Y. ﬁitedly. Ladicky et al. [14] propose to predict pixel-wise

ncl r work in idn]V. . . T
conclude our wo Sectidn] semantic class labels to improve both depth estimation and

H. Qin, X. Li, Y. Zhang and Q. Dai are with the Department of émiation, Semantic segmentation performance. Eigeal. [15], [16] use
Tsinghya Uni\_/ersity, Beijing, 1000_84 China e-mail: Ii.@sz.tsinghua_.edu.cn a multi-scale convolutional architecture to refine |Ocapme

H. Qin, X. Liand Y. Zhang are with Graduate School at Shenzfismghua . . . .
University, Shenzhen, 518055 China prediction with global information. Wangt al. [17] propose

Y. Wang is with Microsoft Research Asia. to decompose the image into local segments for region-level
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(a) Test images
II‘ " I'

A IR"

(b) Estimated depth maps by DEPT

Fig. 1. Selected images and corresponding depth maps éstirhg DEPT. The darker the red is, the further (from the imggievice) the objects are. The
darker the blue is, the closer the objects are.

depth and semantic prediction under the guidance of glolmmt convincing depth map through patch sampling. However,
layout. this work only demonstrates the effectiveness of the model,

Besides, there are several other efforts on depth estimatff?d can't estimate depth with an arbitrary input image. Our
with unified global and local information. Liet al. [I8] use Improvements are two-fold: we extend this model from one
continuous variables encoding the depth of the superpirelsi™age to many, and we transfer parameter set to an arbitrary
the input image and discrete variables representing oekati INPUt image according to best image set match.
ships between neighboring superpixels to perform infezenc
through a graphical model. Zhuet al. [19] propose to use B. parameter Transfer
a hierarchical representation of the indoor scene, anderefin
the depth map guided by global layout. Liu and Shetn
al. [20] propose a method to refine depth map predict

We carry out a survey on transfer methods in the field of
é:ldapth estimation. The non-parametric scene parsing by Liu
by convolutional networks by continuous conditional ramdo et al. [23) avoids explicitly defining a parametric model and

! . scales better with respect to the training data size. TheltDep

field. In the work by Baiget al. , , they express the .

! W y Baig 211, [22] y express T&ansfer method by Karsckt al. [13] leverages this work

global depth map of an image as a linear combination of d mes that nes with similar semant hould hav
depth basis learned from examples. The basis is actuall}?.% assumes that scenes simriar semantics should: have

dictionary of the training dataset, and the images near t imilar depth distributions after densely aligned. The@thod

cluster centroids are picked as basis elements. Our camdur ontains three stages. First, given an input image, theyfind

and independent work also use cluster controids but withb§St matched images n RGB space. 'I_'hen,}th_enages are
totally different way, which we will introduce in detail. Warpe(_j t9 be_: densely ahgngd with the input. Finally, theg us
an optimization scheme to interpolate and smooth the warped
Under specific conditions, there are other depth extrqgépth values to get the depth of the input.
methods, such as dark channel prior proposed bygtié [23], Our work is different in three aspects. First, instead oftlep
proved effective for hazed images. we transfer parameter set to the input image, so we don't need
The method closest to ours is the parametric model deest process like warping. Second, our database is composed
veloped by Wanget al. [24] for describing the correlation of parameter sets instead of RGB-D images, so the database
between single color images and depth maps. This work treatsupies little space. Third, the depth values are computed
the color image as a set of patches and derives the correlatigth the transferred parameter set directly, so we don'dnee
with a kernel function in a non-linear mapping space. Theyn optimization procedure after transfer.
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I1l. DEPT: DEPTHESTIMATION BY PARAMETER and effect. However, we uséd’ to integrate the global infor-
TRANSFER mation, so we can choose smaller sized filters to reduce time

: : - ) .
In this section, we first introduce the modeling proceduw@nsum'?fg‘z)(_') is set asp(z) = log(1 +2%), as it has been

for inferring the correlation between color images and HepProven effective in([24]. _ .

maps. Then, we introduce the parameter transfer method ir?) Estimating Model ParametersFirst, we rewrite EqLI2

detail. as
E=|M¢(XF)y—d|f;, ®)
A. The Parametric Model and
The prior work of Wanget al. [24] proposed a model .
to build the correlation between a single imageand its E = |[To(F"X)w —d|f3 , 4)

corresponding depth map with a set of parameters. We , ) , L
whereX is got by concatenating all th&; in Eq.[2. X is got

extend this by using a set of similar imagés and their ; T S
corresponding depth ma@sS. So the parameters contain®y concatenating all th&'/ . Each row ofM is w, and each

information of all the images in the set. row of " is 47 So Eq[B is a least square problemmgfand

We regard each color image as a set of overlapped fixé%q',@‘ lsa least square pr_oblemwf Then we minimizeZ by
size color patches, of which the size will be discussed.lat&pt'm'z_'ng the filters£”. Finally we get a set of parametgrs,
For each image, we sample the patclgsts, ..., z, and their co_nsstmg of i, ~, _and w. Tht_a detailed method for solving
corresponding depth values from RGB-D image set. To avdifS ¢an be found in our previous work [24].
over-fitting, we only sample patches from each image. In
our experiment, we setas 1000, and the samples account for
0.026% of the total patches in one image. We use a unifoffn Parameter Transfer

sampling methodi.e, we separate the image into grids and Quyr parameter transfer procedure, outlined in Eig. 2, has

select samples uniformly from all the grids. By denotiNg tnree stages. First, we build a parameter set database using

as the number of images in an image set, totally we samplgining RGB-D images. Second, given an inputimage, we find

N x p patches. Specially, for single imag¥, = 1. the most similar image sets using high-level image feafures
1) Modeling the Correlation between Image and Depth:ang transfer the parameter set to the input image. Third, we

After the sampling procedure, we model the correlation tbbmpute the depth of the input image.

m.easuring the sum squared error between the déptlapped 1) Parameter Set Database BuildingGiven a RGB-D

with the sampled color patches and the ground truth dépthy aining dataset, we compute high-level image features for

The model is written as each image. Here, we use GIST[26] features, which can be
px N n used to measure similarities of images. Then, we categorize
_ T e £ 12 the training images tdV sets, using k-means cluster method.
b ; tr(W ;%qﬁ(xz *Ji) =il @) Next, we get the central GIST feature for each image set. For
. o . each image set, the corresponding parameter set is obtained
whereF is the sum squared estimation errpiis the number sing our parameter estimate model. The central GIST festur
of sample patches per imag#, is the number of images in gnqg corresponding parameter sets compose our parameter set
the image setf; is the filters,n is the number of filters and yatapase. Actually, this database is so small as to occupy mu
set as 9 in all the experiments. If set larger, the algoritem pgg space compared to the RGB-D datasets.

expected to get better results, but bring larger cosis the 2) Image Set MatchingGiven an input image, we compute

kernel function to map the convolved patches and sum th?@ GIST feature and find the best matched central GIST
up toone patch-; is the weight of each convolved patdi,

) . . o feature from our trained database. Then the parameter set
is the weight matrix, whose size is the same of ¢tine patch P

L - ) . i corresponding to the best matched central GIST featuee (
aiming at integrating the overall information from eachgbat the central GIST feature of the most similar image set) is
Eq.[d can be rewritten as

transferred to the input image. We define the best match as

pxXN

E=Y " |w'e(XiF)y—dif”, @) Grest = _min || Ginpur = Gill (5)

=1
where X; is a matrix reshaped from patch;. The row whereG;,,,; denotes the GIST feature of the input image,
size of X; is the same asf;, while F = [f1, f2,..., fn], andG; denotes the central GIST feature of each image set.
v = 71,72, -, 7] T . W is the result of concatenating all the As the most similar image set matches the input closely in
entries of W. feature space, the overall semantics of the scenes arasimil

At the image level,F' describes the texture gradient cuest the low level, the cues such as the texture gradient, textu

of the RGB image by extracting the frequency informatign. variation, and color are expected to be roughly similar imso
describes the variance of filters. We use Principle Componextent. With the model above, the parameters connecting the
Analysis (PCA) to initializeF', and optimize it afterwards. As images and depth maps should be similar. So, it is reasonable
for the size of filter, we need to balance between efficienty transfer the parameter set to the input image.
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Fig. 2. Our pipeline for estimating depth. First we build agaeter set database, then the parameter set is transferted input image according to the
best matched GIST feature. Finally, the parameter set i@ tsestimate the depth.

3) Depth Estimation:We use the color patches of the input
image and the transferred parameter set to map the estimatio L ]
depth. The computational formula is:

d=M¢(XF)y, (6)

where X is the patchesF is the filters.~ is the weight to - 1
balance the filtersM is the weight matrix. These parameters
are all from the parameter set.

Cluster

IV. EXPERIMENT

In this section, we evaluate the effectiveness of our DEPT
method on single image RGB-D datasets. :

L L L L
-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

A. RG B' D Datasets Silhouette Value ’

We use the Make3D Range Image Dataset [27]. The dataggt 3. silhouette plot of the k-means cluster result. E4ob fepresents an
is collected using 3D scanner and the corresponding dep‘thge. Lines on the right side o measure how distant that image is from
: ; ighboring image sets. Lines on the leftloindicate that image is probably
maps using Iqsers. There ar(_a FOta”y 534 Ima}g_es separ_ated g's?signed to the wrong set. The vertical axis indicatesréiffieclusters (image
two parts, which are the training part containing 400 imagests).
and the testing part containing 134 images, respectivelg. T

color image resolution 12272 x 1704, and the ground truth

depth map resolution i85 x 305. Befor training, we resize (, jygjcate that image is probably assigned to the wrong set.
the depth map resolution to the same size of the color imagye vertical axis indicates different clusters (image )ses
so RGB and D (Depth) have pixel-wise correspondence. \ye can see, most of the images are well clustered. As for

the choosing ofNV, initially we choose it by observing the
B. Image Cluster silhouette plot, then we try a series of values with a step of

We compute the GIST features for each image in thH&- The results around 30 are close, and 30 is the best. The
training dataset. Then we use k-means algorithm to clusfd¢ster number can also be set according to existing pattern
the images into N sets, here we 9étas 30. The images areClaSSiﬁcation methOdSE(g.methOdS to find best in k-means
well separated according to the scene semantics. The sttieou@lgorithm [28], [29]). We believe N should not be too large
plot in Fig.[3 measures how well-separated the resultingjgna®’ too small. Too large N may set similar scenes apart while
sets are. Lines on the right side @measure how distant thattoo small N may result in large scene variety in one set.
image is from neighboring image sets. Lines on the left of An example image set is shown in F[g. 5. It can be seen
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(b) The corresponding depth maps

Fig. 5. One example image set after image cluster proce€alés a clustered image set, containing 18 semantic sinmiages, (b) are their corresponding
depth maps. The depth distributions in the images are rgugihiilar.
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1 — — TABLE |
ool AVERAGE ERROR AND DATABASE SIZE COMPARISON OF VARIOUS
ESTIMATE METHODS.
0.8
ol Method RE LE RMSE Trained Database
ook Depth MRF [9] 0.530 0.198 16.7
. Make3D [27] 0.370 0.187
zos Feedback Cascadés [12] - - 15.2 -
. Deep CNN Fields[[20] 0.314 0.119 8.60 140 MB
' Depth Transfer[[13] 0.361 0.148 15.1 2.44 GB
0sf ] DEPT with GIST(ours) 0.489 0.182 16.9 1.47 MB
DEPT with CNN(ours)  0.421 0.172  16.7 1.25 MB
0.2
0.1
O a0 a0 G0 @0 1000 1200 100 1600 1800 2000 whereP is the pixe| number of a depth map.
Iteration
Error measure for each image is the average value of all the
Fig. 4. Energy decline curves of the 30 image sétss on a In scale. pixels on the ground truth resolution scal& (x 305). Then

the measures are averaged over all the 134 images to get final

that the clustered images have roughly similar semantigesce®'T0r Metrics, which are listed in Tatile |. .
The depth distributions also seem similar, as are shownein th AS ¢an be seen, our results are better than Depth MRF [9] in
color images as well as the depth maps. view of RE andLE, better than Make3D [27] in view d&E.

Totally speaking, the results of DEPT are comparable wigh th
state-of-the-art learning based automatic methods. ksdpec

E hi i timate th di E PT only requires a very small sized database, and once the
or €ach image set, we estimate the corresponding Moty aqe is built, we can compute the depth directly. Built

parameters. The overlapped patch size i_sl§e<t1§. The f_ilter from the 400 training RGB-D images that occupy 628MB
S'Z.(fe IS Iset as T 31'0\3,8 setpr;rate eaph |magSe lptg\agr!dsdangpace, our database size is only 188KB (0.03%). As a contrast
uhriormly sample palChes perimage. S0 ToaBIZEd g rained database of Depth Transfer [13] occupies 2.84GB
image set, totallf 000 x N patches are sampled, which OCCUP)(about 4 times of the original dataset size). Though our
0.026% of the whole image set. We initialize the filters withmethod hasdisadvantagein average errors over the Depth
ransfer [18], we have largadvantagesn database space

_ . ) consuming and computer performance requirement(in [13],
6 m m
E < 10" In our experiment, the energy (i.e., the su squarvﬁﬁ authors claim Depth Transfer requires a great deal of

errors k) declines as Fid.4 shows. As can be seen, mos_té) ta (GB scale) to be stored concurrently in memory in the
the curves come to a steady state after about 1000 iteratio imization procedure), which are especially crucial witee
The smaller the steady energy is, the more similar the imag((ggabase grows in real ’applications. Recent deep CNN based

in that set are. . - d%pth estimation methods get lower errors. Essentially, ou
For each image set, we obtain one optimized parameter sgf,

) convolutional operation and optimization method is simita

The 30 parameter sets and the co_rrespon@ng cluster m”%'onvolutional neural network with only one layer. From this
(the center of the GIST features in each image set) make F%Jmt of view, our method uses much less parameters with
the parameter sets database. good results, if implemented on high-end GPU, as deep CNNs
N are, our method would gain much higher efficiency.
D. Depth Estimation ?y Parameter Transfer Further more, our method also has advantages in some of
~ Foreach of the testing 134 images, we find the best matchd estimation effects, as is detailed in the following gative
image set from the parameter sets database and computeathfyation.
depth maps using the computational formula of [Eqg. 6. 2) Qualitative Evaluation:A qualitative comparison of our

1) Quantitative Comparison with Previous Methoddle  qqtimated depth maps, depth maps estimated by Depth Trans-
calculate three common error metrics for the estimatedhdept, [13] and the ground truth depth maps are demonstrated in
DenotingD as the estimated depth ailas the ground truth Fig.[d and Fig7. As can be seen, our estimated depth maps are

depth, we calculat®RE (relative error): visually reasonable and convincing, especially in the itteta

C. Parameter Sets Estimation

start gradient descent method. The iteration stop comdito

RE — |]5 - D] like texture variations (e.g., the tree in the second colwhn
- D @) Fig.[8) and relative depth (e.g., the pillars’ depth in thst la
LE (log,, error): column of Fig[® is well estimated by our DEPT method, while
. Depth Transfer[[13] estimates wrong). Actually, some of our
LE = |log;((D) —log,(D)]| , (8) results are even more accurate than the ground truth (e.g.,
and RMSE (root mean squared errjr in the third column in Fig[]7, there is a large part of wrong
L limplemented ~ with  the  authors’  public  codes  at
RMSE = Z (D; - D;)?/P, (9) nhttp:/iresearch.microsoft.com/en-us/downloads/280281079-4435-9810-

i1 74709376bcel/
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(b) Ground truth depth maps

(c) Estimated depth maps by DEPT (our method)

=

———

(d) Estimated depth maps by Depth Transfer [13]

Fig. 6. Performance comparison: scenes of streets, sqaatk$frees. (a) show some test images containing streetaresqar trees, (b) are corresponding
ground truth depth maps, (c) are estimated depth maps by Q&rTmethod), (d) are estimated depth maps by Depth TrafE3r
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(a) Test images

(b) Ground truth depth maps

i
il

i |‘|u‘|‘i

(c) Estimated depth maps by DEPT (our method)

.

--

(d) Estimated depth maps by Depth Transfer [13]

Fig. 7. Performance comparison: scenes of buildings. (e)vstome test images containing buildings, (b) are corredipgnground truth depth maps, (c)
are estimated depth maps by DEPT (our method), (d) are dstintepth maps by Depth Transfer [13]
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(c) Estimated depth maps by DEPT (our method)

(d) Estimated depth maps by Depth Transfer [13]

Fig. 8. Performance comparison: indoor scenes. (a) showe dest images containing buildings, (b) are correspondimmyirgd truth depth maps, (c) are
estimated depth maps by DEPT (our method), (d) are estingdpth maps by Depth Transfér [13]

depth in the building area of the ground truth depth mapyhe dataset is partitioned into 795 training images and 654
The ground truth maps have some scattered noises, which nesting images. When training DEPT, we cluster the training
result from the capturing device. While the noises in ourtdepdataset to 80 sets, guided by k-means silhouette plot aedrlin
maps are less because of the using of overall informationsearch. One example of the cluster set is shown in Figlire. 9.
the image set. But we must point out that the sky areas @uantitative results are shown in Taldlg. Il. In addition lte t
our depth maps are not as pleasing, which may result fraghree standard metrics, we also report the metrics usediin [1
the variation of sky color and texture among various imageefined as

in a set, especially when the cluster result is biased. Thig m

result in the increase of average error in the previous ogetri _p

However, as the increasing of RGB-D images acquired by N Z maz( " dp ) =0 <] x100%, (10
depth imaging devices, our database can expand easily due

to the extremely small space consuming, which means wuhere g, is the ground-truth of pixelp, d, is the cor-
may get more and more accurate matched parameter setsrésponding estimated depthdly is the number of pixels,

existing RGB images and video frames. t = 1.25,1.252,1.25% is the threshold, and[]] denotes
the indicator function. We can observe that DEPT achieves
E. Evaluation on Indoor Datasets comparable quantitative results with much less space am ti

We also implement an experiment on the NYU Depth VEonsurr_wptl_on. -
Dataset[[30], which consists of 1449 indoor RGB-D images Quialitative results are shown in Figulré. 8. We can see DEPT
captured with Kinect. We use theabeled DatasBt | ie., gets not so smooth results (we did not use smoothing oparatio
1449 densely labeled pairs of aligned RGB and depth |magé§..Depth Transfer did), but infers more details on the edges.
This may be useful when an application cares more about

2http:/ics.nyu.eduf silberman/datasets/nydepth v2. html edges of depth map.
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Fig. 9. One example image set after image cluster procedufdYJ. The clustered image set contains 9 semantic similages.

In addition, the testing procedure (654 images) consumes/Ne carry out experiments with the new framework. The
about 4 hours with DEPT on our computer (Intel Xeon EZesult is listed in Table] | and Tablg] Il. We observe deaeas
1330 V2 CPU, 16GB RAM, 64bit Windows 7, without anyof all the error indicators. This performance is better than
algorithm optimization), while it takes about 45 hours witlthe originally proposed method in the conference version

Depth Transfer[[13]. of this work [34]. In the mean time, though CNN features
can improve the performance, it increases time consuming
F. Replace GIST With Deep CNN and model size. Because for now, most of the CNN based

Following prior work [31], [32], we observe that convo-methods rely on high performance GPUs. It is too slow on
lutional neural networks have good scene descriptions fegrsonal computers, not to mention mobile devices. So, we
images. Thus, we follow the method df [32] to computéeed to balance the performance, speed and model size in real
the representations of the RGB images. The CNN featuggplications. However, we can expect more improvement of
extraction process is illustrated in Fig.]10. For each of tHeEPT when better algorithms for semantic scene matching are
training images, the representation is computed as follows proposed.

v =CNNy, (1), (11) V. CONCLUSION AND FUTURE WORKS

where CNN,,_ () transforms the pixels of imagé into In this paper, we propose a lightweight, effective and fully
a 4096-dimensional activation of the fully connected layexutomatic technique to restore depth information from Ising
immediately before the classifier, i.e., the 1000-way saftm still images. Our depth estimation by parameter transf&RD
layer. The CNN parameter§. contain approximately 60 T) method is novel in that we use clustered scene semantics
million parameters and the architecture closely follows thsimilar image sets to model the correlation between RGB
network of Krizhevskyet al. [33], but we chop off the final information and D (depth) information, obtaining a databas
1000-way softmax layer. In this way, after network forwaigli of parameter sets and cluster centers. DEPT only requires
each image is represented as a 4096-dimensional vector. the trained parameter sets database which occupies much

This vector can be treated as features of the image, whielss space compared with previous learning based methods.
will be referred to below as CNN features. We replace GISExperiments on RGB-D benchmark datasets show quantita-
features with CNN features in the previous framework. tively comparable to the state-of-the-art and qualitdyigmod
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TABLE Il

EXPERIMENTAL RESULTS ONNYU INDOOR DATASET.
Method RE LE RMSE §<125 §<1.25% §<125° Database Time
Depth Transfer([13] 0374 0.134 112 49.81%  79.46%  93.75% 14 GB 45 hours
DC-Depth [18] 0.335 0.127 106 5155%  82.32%  95.00% - -
Zhuoet. al [19)] 0.305 0.122 104 5250% 83.77%  96.16% - -

DEPT with GIST (ours) 0.392 0.151 1.19 48.50% 79.02% 93.12% 65 KB 4 hours
DEPT with CNN (ours) 0.353 0.130 1.11 51.24% 80.62% 94.35% 0 KB 4 hours
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Fig. 10. An illustration of the CNN feature extraction ateloiure. A224 x 224 crop of an image (RGB) is presented as the input. It is comeblwith 96
different filters, each of siz& x 7, using a stride of 2 in both x and y. The resulting feature mapsthen: (i) passed through a rectified linear function (not
shown), (i) pooled (max withir8 x 3 regions, using stride 2) and (iii)contrast normalized asrteature maps to give 96 differed% x 55 element feature
maps. Similar operations are repeated in layers 2,3,4,86.13t two layers are fully connected, taking features fromtop convolutional layer as input in
vector form ¢ x 6 x 256 = 9216 dimensions). The output of layer 7 are our CNN features iroreflorm(4096 dimensions). The final layer is a 1000-way
softmax function, whose output is 1 predicted class out @010

results. The estimated depth maps are visually reasonatlle g3] F. Li, J. Yu, and J. Chai, “A hybrid camera for motion deting

convincing, especially in the details like texture vaoat and depth map super-resolution,’ i@omputer Vision and Pattern
. . . Recognition, 2008. CVPR 2008. IEEE Conference otEEE, 2008,
and relative depth. Further more, as the increasing of RGB-D ;" %g

. ) . . . p
images acquired by depth imaging devices, our database c@n A. Torralba and A. Oliva, “Depth estimation from imagerstture,’
expand easily due to the extremely small space consuming. Pattern Analysis and Machine Intelligence, |IEEE Transawdi on

. L. . vol. 24, no. 9, pp. 1226-1238, 2002.
As our model is only about one MB, it is very suitable [5] Y. Horry, K.-1. Anjyo, and K. Arai, “Tour into the pictureusing a spidery

to use on mobile devices (The code will be released upon mesh interface to make animation from a single imagePrioceedings
publication). In the future work, we would like to improve of the 24th annual conference on Computer graphics and antie

. S techniques ACM Press/Addison-Wesley Publishing Co., 1997, pp.
the cluster accuracy by exploring more accurate similarity 555 535

metrics that are applicable to our image and depth coroelati [6] L. Zhang, G. Dugas-Phacion, J.-S. Samson, and S. M. S@ingle-
model. We plan to build a larger RGB-D image dataset as more view modelling of free-form scenesThe Journal of Visualization and

. . . Computer Animationvol. 13, no. 4, pp. 225-235, 2002.
data brings better performance with our method. Finally, w 1 D. Hoiem, A. A. Efros, and M. Hebert, “Automatic photo pap.” in

suppose it is also meaningful to improve the depth estimatio =~ ACM Transactions on Graphics (TOGJol. 24, no. 3. ACM, 2005,
performance for video frames by using optical flow feature?8 pp. 577-584.

or other features related to time coherence 1 E. Delage, H. Lee, and A. Y. Ng, "A dynamic bayesian netwarodel
: for autonomous 3d reconstruction from a single indoor infage

Computer Vision and Pattern Recognition, 2006 IEEE Compbiteiety

Conference onvol. 2. |EEE, 2006, pp. 2418-2428.
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